MHB Statistsics Mathematics Problem: Linear Regression

iamblessed20062
Messages
2
Reaction score
0
Find the equation of the regression line for the given data. then construct A SCATTER PLOT of the data and draw the regression line. (each pair of variables has a significant correlation.) then use the regression equation to predict the value of y for each of the given x- values, if meaningful. the caloric content and the sodium content(in milligrams) for 6 beef ho dogs are shown in the table below. find the regression equation. y=_________________________ x +______________________________. (round to three decimal places as needed.) (a) x = 160 calories (b) x = 100 calories (c) x = 140 calories (d) x = 60 calories calories, x, 150, 170, 130, 120, 90, 180 sodium, y, 415, 465, 340, 370, 270, 550
 
Mathematics news on Phys.org
Hello and welcome to MHB, iamblessed20062! :D

It appears that given the calories of a hot dog, the sodium content can be predicted from this. I am going to present the data in tabular format, so that it is more easily read:

[table="width: 250, class: grid, align: left"]
[tr]
[td]Calories[/td]
[td]Sodium Content (mg)[/td]
[/tr]
[tr]
[td]150[/td]
[td]415[/td]
[/tr]
[tr]
[td]170[/td]
[td]465[/td]
[/tr]
[tr]
[td]130[/td]
[td]340[/td]
[/tr]
[tr]
[td]120[/td]
[td]370[/td]
[/tr]
[tr]
[td]90[/td]
[td]270[/td]
[/tr]
[tr]
[td]180[/td]
[td]550[/td]
[/tr]
[/table]

Now, according to my old Stats textbook, we have:

[box=green]Regression equation: $$\hat{y}=b_0+b_1x$$, where:

$$b_1=\frac{S_{xy}}{S_{xx}}$$

$$b_0=\frac{1}{n}\left(\sum y-b_1\sum x\right)$$

$$S_{xx}=\sum\left(x-\overline{x}\right)^2$$

$$S_{xy}=\sum\left(\left(x-\overline{x}\right)\left(y-\overline{y}\right)\right)$$[/box]

Can you proceed?
 
No, I cannot proceed from here.:-(
MarkFL said:
Hello and welcome to MHB, iamblessed20062! :D

It appears that given the calories of a hot dog, the sodium content can be predicted from this. I am going to present the data in tabular format, so that it is more easily read:

[table="width: 250, class: grid, align: left"]
[tr]
[td]Calories[/td]
[td]Sodium Content (mg)[/td]
[/tr]
[tr]
[td]150[/td]
[td]415[/td]
[/tr]
[tr]
[td]170[/td]
[td]465[/td]
[/tr]
[tr]
[td]130[/td]
[td]340[/td]
[/tr]
[tr]
[td]120[/td]
[td]370[/td]
[/tr]
[tr]
[td]90[/td]
[td]270[/td]
[/tr]
[tr]
[td]180[/td]
[td]550[/td]
[/tr]
[/table]

Now, according to my old Stats textbook, we have:

[box=green]Regression equation: $$\hat{y}=b_0+b_1x$$, where:

$$b_1=\frac{S_{xy}}{S_{xx}}$$

$$b_0=\frac{1}{n}\left(\sum y-b_1\sum x\right)$$

$$S_{xx}=\sum\left(x-\overline{x}\right)^2$$

$$S_{xy}=\sum\left(\left(x-\overline{x}\right)\left(y-\overline{y}\right)\right)$$[/box]

Can you proceed?
 
It seems like we should first compute $S_{xx}$. So, we need to identify $n$ and $\overline{x}$...can you find these?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top