MHB Steady State Question Understanding

mt91
Messages
13
Reaction score
0
1596323380616.png


I've got 2 questions here. I was able to work out question 5 and calculate the steady states. However for question 6 I've got no idea with the wording of the equation and where you would start, so any sort of help would be really helpful, cheers
 
Physics news on Phys.org
Okay, so for #5 you saw that the "steady state" solutions satisfy u(1- u)(1+u)= Eu. An obvious solution is u=0. If u is not 0, we can divide both sides by u and have $(1- u)(1+ u)= 1- u^2= E$ so $u^2= 1- E$ and the two other steady state solutions are $u= \sqrt{1- E}$ and $u= -\sqrt{1- E}$ which, of course, are only defined for E< 1. u= 0 is obviously a stable solution. The other two are unstable. You haven't said what "u" represents so I have no idea what "biologically relevant" could mean here. (If u is the population of some species then "$u= -\sqrt{1- E}$" is obviously NOT "biologically relevant" since u cannot be negative.)

For #6, if y= Eu(E) then y'= u(E)+ Eu'(E)= 0 at a maximum. Obviously "u(x)= 0" will NOT give "maximum yield". With $u(E)= \sqrt{1- E}= (1- E)^{1/2}$, $u'= -\frac{1}{2}(1- E)^{-1/2}$ and $y'= u(E)+ Eu'(E)= (1- E)^{1/2}-\frac{1}{2}E(1- E)^{-1/2}= 0$ so $(1- E)^{1/2}= \frac{1}{2}E(1- E)^{-1/2}$ and $2(1- E)= E$, $2- 2E= E$, $2= 3E$, and $E= \frac{2}{3}$.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top