Stochastic Differential Equation using Ito's Lemma

Click For Summary

Discussion Overview

The discussion revolves around the application of Ito's Lemma in the context of Stochastic Differential Equations (SDEs). Participants explore the derivation of an SDE using Ito's Lemma, focusing on the transformation of variables and the mathematical steps involved in the process.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Homework-related

Main Points Raised

  • One participant expresses confusion about Ito's Lemma and requests assistance in understanding it.
  • Another participant provides a derivation involving a process defined by $dY_t = \mu_t dt + \sigma_t\, dX_t$, applying Ito's Lemma to a function $g(u) = e^u$ where $u = \log y$.
  • The derivation includes several mathematical expressions, detailing the transformation from $du$ to $dy$ using Ito's Lemma.
  • A further request for clarification on the steps taken in the derivation indicates ongoing confusion and a desire for a more detailed explanation.
  • A participant explains the conditions under which Ito's Lemma applies, mentioning the continuity requirements for the function involved.

Areas of Agreement / Disagreement

Participants generally agree on the application of Ito's Lemma and the mathematical steps involved, but there remains uncertainty regarding the understanding of these steps, as indicated by requests for further clarification.

Contextual Notes

Some participants note the specific conditions required for applying Ito's Lemma, such as the differentiability of the function involved, but these conditions are not fully resolved in the discussion.

cdbsmith
Messages
6
Reaction score
0
I am new to SDE, and especially Ito's Lemma. I have a question that I simply cannot answer. It attached.

Can someone please help?
 

Attachments

  • Q1 - Itos Lemma.png
    Q1 - Itos Lemma.png
    6.8 KB · Views: 148
Physics news on Phys.org
cdbsmith said:
I am new to SDE, and especially Ito's Lemma. I have a question that I simply cannot answer. It attached.

Can someone please help?

Hi cdbsmith,

Let $u = \log y $, $\mu_t = \alpha - \beta u$, and $\sigma_t = \delta$. Then $du = \mu_t dt + \sigma_t dX_t$. Let $g(u) = e^u$. We have by Ito's lemma

$\displaystyle dg = \left(g'(u)\mu_t + \frac{g"(u)}{2}\sigma_t^2\right) dt + g'(u)\sigma_t\, dX_t $,

$\displaystyle dg = \left[e^u(\alpha -\beta u) + \frac{e^u}{2}\delta^2\right] dt + e^u\delta\, dX_t$,

$\displaystyle \frac{d(e^u)}{e^u} =(\alpha - \beta u + \frac{1}{2}\delta^2) dt + \delta\, dX_t$,

$\displaystyle \frac{dy}{y} = (\alpha - \beta\log y + \frac{1}{2}\delta^2) dt + \delta\, dX_t$.
 
Euge said:
Hi cdbsmith,

Let $u = \log y $, $\mu_t = \alpha - \beta u$, and $\sigma_t = \delta$. Then $du = \mu_t dt + \sigma_t dX_t$. Let $g(u) = e^u$. We have by Ito's lemma

$\displaystyle dg = \left(g'(u)\mu_t + \frac{g"(u)}{2}\sigma_t^2\right) dt + g'(u)\sigma_t\, dX_t $,

$\displaystyle dg = \left[e^u(\alpha -\beta u) + \frac{e^u}{2}\delta^2\right] dt + e^u\delta\, dX_t$,

$\displaystyle \frac{d(e^u)}{e^u} =(\alpha - \beta u + \frac{1}{2}\delta^2) dt + \delta\, dX_t$,

$\displaystyle \frac{dy}{y} = (\alpha - \beta\log y + \frac{1}{2}\delta^2) dt + \delta\, dX_t$.

Thanks, Euge!

But, can you explain to me the steps? Ito's Lemma is confusing for me and I'm having a hard time understanding it.

Thanks again!
 
cdbsmith said:
Thanks, Euge!

But, can you explain to me the steps? Ito's Lemma is confusing for me and I'm having a hard time understanding it.

Thanks again!

Sure, let's start with this. Suppose you have a process $dY_t = \mu_t dt + \sigma_t\, dX_t$ where $X_t$ is a Brownian motion. If $T > 0$ and $f(t, x)$ is a function that is in $C^{1,2}_{t, x}([0, T] ;(0,\infty))$, that is, continuously differentiable with respect to $t$ on $[0, T]$ and continuously twice-differentiable with respect to $x$ on $\Bbb (0,\infty)$, then $f(t, Y_t)$ satisfies the SDE

$\displaystyle df(t, Y_t) = \left(f_t + \mu_t f_x + \frac{\sigma_t^2}{2} f_{xx}\right) dt + \sigma_t f_x \, dX_t$.

This is a version of Ito's lemma which is applicable to several SDE. Now there are more general versions of the lemma which deal with cases where $X_t$ is a semi-martingale, but for your problem the above formula will do.

In your SDE, I let $u = \log y$ so that $y = e^u := g(u)$. Then I can find $dy$ by using Ito's formula with $g$. Note that $g$ is independent of $t$, so $g_t = 0$. That's how I got

$\displaystyle dg = \left(g'(u)\mu_t + \frac{g''(u)}{2}\sigma_t^2\right) dt + g'(u)\sigma_t$.

I hope this helps.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K