MHB Stochastic Differential Equation using Ito's Lemma

Click For Summary
The discussion revolves around understanding Stochastic Differential Equations (SDE) and specifically applying Ito's Lemma. A user seeks clarification on the steps involved in using Ito's Lemma to derive the SDE for a process defined as \(dY_t = \mu_t dt + \sigma_t dX_t\). Another participant explains the application of Ito's Lemma, detailing how to express \(dy\) using the function \(g(u) = e^u\) and the relationships between the variables. The explanation emphasizes the importance of differentiability conditions for the function involved and clarifies how to derive the final equation for \(dy/y\). The conversation highlights the complexities of Ito's Lemma and the need for clear step-by-step guidance in its application.
cdbsmith
Messages
6
Reaction score
0
I am new to SDE, and especially Ito's Lemma. I have a question that I simply cannot answer. It attached.

Can someone please help?
 

Attachments

  • Q1 - Itos Lemma.png
    Q1 - Itos Lemma.png
    6.8 KB · Views: 132
Physics news on Phys.org
cdbsmith said:
I am new to SDE, and especially Ito's Lemma. I have a question that I simply cannot answer. It attached.

Can someone please help?

Hi cdbsmith,

Let $u = \log y $, $\mu_t = \alpha - \beta u$, and $\sigma_t = \delta$. Then $du = \mu_t dt + \sigma_t dX_t$. Let $g(u) = e^u$. We have by Ito's lemma

$\displaystyle dg = \left(g'(u)\mu_t + \frac{g"(u)}{2}\sigma_t^2\right) dt + g'(u)\sigma_t\, dX_t $,

$\displaystyle dg = \left[e^u(\alpha -\beta u) + \frac{e^u}{2}\delta^2\right] dt + e^u\delta\, dX_t$,

$\displaystyle \frac{d(e^u)}{e^u} =(\alpha - \beta u + \frac{1}{2}\delta^2) dt + \delta\, dX_t$,

$\displaystyle \frac{dy}{y} = (\alpha - \beta\log y + \frac{1}{2}\delta^2) dt + \delta\, dX_t$.
 
Euge said:
Hi cdbsmith,

Let $u = \log y $, $\mu_t = \alpha - \beta u$, and $\sigma_t = \delta$. Then $du = \mu_t dt + \sigma_t dX_t$. Let $g(u) = e^u$. We have by Ito's lemma

$\displaystyle dg = \left(g'(u)\mu_t + \frac{g"(u)}{2}\sigma_t^2\right) dt + g'(u)\sigma_t\, dX_t $,

$\displaystyle dg = \left[e^u(\alpha -\beta u) + \frac{e^u}{2}\delta^2\right] dt + e^u\delta\, dX_t$,

$\displaystyle \frac{d(e^u)}{e^u} =(\alpha - \beta u + \frac{1}{2}\delta^2) dt + \delta\, dX_t$,

$\displaystyle \frac{dy}{y} = (\alpha - \beta\log y + \frac{1}{2}\delta^2) dt + \delta\, dX_t$.

Thanks, Euge!

But, can you explain to me the steps? Ito's Lemma is confusing for me and I'm having a hard time understanding it.

Thanks again!
 
cdbsmith said:
Thanks, Euge!

But, can you explain to me the steps? Ito's Lemma is confusing for me and I'm having a hard time understanding it.

Thanks again!

Sure, let's start with this. Suppose you have a process $dY_t = \mu_t dt + \sigma_t\, dX_t$ where $X_t$ is a Brownian motion. If $T > 0$ and $f(t, x)$ is a function that is in $C^{1,2}_{t, x}([0, T] ;(0,\infty))$, that is, continuously differentiable with respect to $t$ on $[0, T]$ and continuously twice-differentiable with respect to $x$ on $\Bbb (0,\infty)$, then $f(t, Y_t)$ satisfies the SDE

$\displaystyle df(t, Y_t) = \left(f_t + \mu_t f_x + \frac{\sigma_t^2}{2} f_{xx}\right) dt + \sigma_t f_x \, dX_t$.

This is a version of Ito's lemma which is applicable to several SDE. Now there are more general versions of the lemma which deal with cases where $X_t$ is a semi-martingale, but for your problem the above formula will do.

In your SDE, I let $u = \log y$ so that $y = e^u := g(u)$. Then I can find $dy$ by using Ito's formula with $g$. Note that $g$ is independent of $t$, so $g_t = 0$. That's how I got

$\displaystyle dg = \left(g'(u)\mu_t + \frac{g''(u)}{2}\sigma_t^2\right) dt + g'(u)\sigma_t$.

I hope this helps.
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
18
Views
3K