MHB Stochastic Taylor's Expansion (Ito Rule)

Click For Summary
The discussion centers on finding the Taylor expansion of the exponential function $e^{-\int_0^t k(s) dW_s}$, where $k(s)$ is a continuous function and $W_t$ is standard Brownian motion. The user successfully computed the expansion for the case of a constant $k$ as $e^{-k W_t} = 1 - k\int_0^t e^{-kW_s}dW_s + \frac{1}{2}k^2\int_0^t e^{-kW_s}ds$. However, they seek assistance with the more complex case involving a nonconstant function $k(s)$. A response suggests using a stochastic integral approach and applying a formula for analytic functions around $x=0$. The conversation emphasizes the challenge of extending known results to nonconstant scenarios in stochastic calculus.
gnob
Messages
11
Reaction score
0
Good day.

For $k\geq0$ a continuous function on $\mathbb{R}_+$ and $\{W_t\}$ a standard Brownian motion, could you help me find the Taylor's expansion of the following exponential: $e^{-\int_0^t k(s) dW_s}.$

For the case where $e^{-k W_t}$ where $k>0$ is a constant, I was able to recompute its Taylor's expansion as
$$
e^{-k W_t} = 1 - k\int_0^t e^{-kW_s}dW_s + \frac{1}{2}k^2\int_0^t e^{-kW_s}ds.
$$
But in the first exponential above, we have an integral exponent with a nonconstant $k,$ but a function. Please help me on this.

Thanks a lot in advance.
 
Physics news on Phys.org
gnob said:
Good day.

For $k\geq0$ a continuous function on $\mathbb{R}_+$ and $\{W_t\}$ a standard Brownian motion, could you help me find the Taylor's expansion of the following exponential: $e^{-\int_0^t k(s) dW_s}.$

For the case where $e^{-k W_t}$ where $k>0$ is a constant, I was able to recompute its Taylor's expansion as
$$
e^{-k W_t} = 1 - k\int_0^t e^{-kW_s}dW_s + \frac{1}{2}k^2\int_0^t e^{-kW_s}ds.
$$
But in the first exponential above, we have an integral exponent with a nonconstant $k,$ but a function. Please help me on this.

Thanks a lot in advance.

Honestly I'm not sure to give the correct answer to the question but if we consider a stochastic integral like...

$\displaystyle \int_{0}^{t} f \{W(s)\}\ d W(s)\ (1)$

... if f(x) is analytic around x=0, i.e. is...

$\displaystyle f \{W(s)\} = \sum_{n=0}^{\infty} a_{n}\ W^{n} (s)\ (2)$

... then the following formula can be applied...

$\displaystyle \int_{0}^{t} W^{n}(s)\ d W (s) = \frac{1}{n+1}\ W^{n+1} (t) - \frac{n}{2}\ \int_{0}^{t} W^{n-1} (s)\ d s\ (3)$

Kind regards

$\chi$ $\sigma$
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
3K
Replies
4
Views
2K