- #1
- 269
- 24
Let ##\mu: \mathbb{R}\to \mathbb{R}##, ##f: \mathbb{R}\to \mathbb{R}##, and ##r: \mathbb{R}\to [1, \infty)## be bounded measurable functions (which may be discontinuous).
I'm interested in the function ##v:\mathbb{R}\to\mathbb{R}## given by ##v(x) = \mathbb E \left[ \int_0^\infty e^{-\int_0^t r(X_\tau) d\tau} f(X_t) \bigg| X_0 = x, \ dX_t = \mu(X_t) dt + dB_t \right]##, where ##\{B_t\}_t## is a standard Brownian motion.
I know that ##v## is well-defined, and I'm confident that it's continuous. I'm wondering if I can get any stronger smoothness results than this. For instance, is ##v## continuously differentiable?
I'm interested in the function ##v:\mathbb{R}\to\mathbb{R}## given by ##v(x) = \mathbb E \left[ \int_0^\infty e^{-\int_0^t r(X_\tau) d\tau} f(X_t) \bigg| X_0 = x, \ dX_t = \mu(X_t) dt + dB_t \right]##, where ##\{B_t\}_t## is a standard Brownian motion.
I know that ##v## is well-defined, and I'm confident that it's continuous. I'm wondering if I can get any stronger smoothness results than this. For instance, is ##v## continuously differentiable?