String theory deviations from GR in strong field regime

kodama
Messages
1,080
Reaction score
144
string theory is a scalar-tensor theory of gravity, with higher order corrections. in light of the result discovery of gravitational waves of 2 black holes merging, matching GR in the strong field regime, how much deviation should strong theory differ from GR in the strong field regime and can LIGO detect them?

if results continue to match GR in the strong field regime and not match up with string theory, how would this affect string as a theory of QG
 
Physics news on Phys.org
The usual process to generate gravitational waves is part of classical GRT. Currently there is no contribution of quantum gravity to this part. Therefore sring theory is also not able to produce any contribution to this topic. As far as I know scalar-tensor theories do not produce a different output for gravitational waves then GRT. The higher order corrections (in a sense of an effective theory) have more the effect to prevent the singularity (see also http://arxiv.org/abs/1512.08346).
So currently, the strong field regime cannot decide about the trueness of string theory.
 
  • Like
Likes kodama
I came across the following paper by Mir Faizal, Lawrence M Krauss, Arshid Shabir, and Francesco Marino from BC. Consequences of Undecidability in Physics on the Theory of Everything Abstract General relativity treats spacetime as dynamical and exhibits its breakdown at singularities‎. ‎This failure is interpreted as evidence that quantum gravity is not a theory formulated {within} spacetime; instead‎, ‎it must explain the very {emergence} of spacetime from deeper quantum degrees of...