Sum involving pi, ln(2) and Catalan's constant

  • Context: MHB 
  • Thread starter Thread starter Sherlock1
  • Start date Start date
  • Tags Tags
    Constant Pi Sum
Click For Summary
SUMMARY

The discussion focuses on the evaluation of the integral $\displaystyle \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2}\;{dx}$, which equals $\pi \ln 2$. It establishes that the double sum $\displaystyle \sum_{k \ge 0}~\sum_{0 \le j \le k}\frac{(-1)^k}{(2k+3)(j+1)}$ equals $\frac{1}{2}\pi\ln(2) - G$, where $G$ is Catalan's constant. The integral is broken down into parts, leading to the conclusion that $\displaystyle \int_{0}^{1} \frac{\ln(1+x^{2})}{1+x^{2}}\ dx = \frac{\pi}{2}\ \ln 2 - G$. The series expansion of the integral is also provided for completeness.

PREREQUISITES
  • Understanding of definite integrals in calculus
  • Familiarity with logarithmic functions and their properties
  • Knowledge of series expansions and convergence
  • Basic understanding of Catalan's constant and its significance
NEXT STEPS
  • Study the properties of Catalan's constant and its applications in number theory
  • Explore advanced techniques in evaluating definite integrals involving logarithmic functions
  • Learn about series convergence and manipulation techniques in mathematical analysis
  • Investigate the relationship between integrals and sums in mathematical proofs
USEFUL FOR

Mathematicians, students of advanced calculus, and anyone interested in integral calculus and series analysis will benefit from this discussion.

Sherlock1
Messages
38
Reaction score
0
Inspired by http://www.mathhelpboards.com/showthread.php?560-integrals thread: By considering the integral $\displaystyle \int_{0}^{\infty} \frac{\ln(1+x^2)}{1+x^2}\;{dx}$ or otherwise,
show that $\displaystyle \sum_{k \ge 0}~\sum_{0 \le j \le k}\frac{(-1)^k}{(2k+3)(j+1)} = \frac{1}{2}\pi\ln(2)-G$ where $G$ is Catalan's constant.
 
Physics news on Phys.org
In another post it has been demonstrated that...

$\displaystyle \int_{0}^{\infty} \frac{\ln (1+x^{2})}{1+x^{2}}\ dx = \pi\ \ln 2$ (1)

Now with simple steps You can find that...

$\displaystyle \int_{0}^{\infty} \frac{\ln (1+x^{2})}{1+x^{2}}\ dx = \int_{0}^{1} \frac{\ln (1+x^{2})}{1+x^{2}}\ dx + \int_{1}^{\infty} \frac{\ln (1+x^{2})}{1+x^{2}}\ dx = 2\ \int_{0}^{1} \frac{\ln (1+x^{2})}{1+x^{2}}\ dx - 2 \int_{0}^{1} \frac{\ln x}{1+x^{2}}\ dx $ (2)

... so that is...

$\displaystyle \int_{0}^{1} \frac{\ln (1+x^{2})}{1+x^{2}}\ dx = \frac{\pi}{2}\ \ln 2 + \int_{0}^{1} \frac{\ln x}{1+x^{2}}\ dx $ (3)

Some years ago I 'discovered' that is...

$\displaystyle \int_{0}^{1} x^{n}\ \ln x\ dx = -\frac{1}{(n+1)^{2}}$ (4)

... so that is...

$\displaystyle \int_{0}^{1} \frac{\ln x}{1+x^{2}}\ dx = - \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2n+1)^{2}} = - G$ (5)

... and finally...

$\displaystyle \int_{0}^{1} \frac{\ln (1+x^{2})}{1+x^{2}}\ dx = \frac{\pi}{2}\ \ln 2 -G$ (6)

Now find the series expansion of the definite integral in (6) is perfectly possible... but in my opinion is more elegant the (6) without any more 'processing'...

Kind regards

$\chi$ $\sigma$
 
Good job. Here's the series expansion done just for completion.

$\begin{aligned} \int_{0}^{1}\frac{\ln(1+x^2)}{1+x^2}\;{dx} & = \int_{0}^{1}\bigg(\sum_{k \ge 0}(-1)^kx^{2k}\bigg)\bigg(\sum_{k\ge 0}\frac{(-1)^kx^{2k+2}}{k+1}\bigg)\;{dx} \\& = \int_{0}^{1}\sum_{k \ge 0}~\sum_{0 \le j \le k} (-1)^{k-j}x^{2k-2j}\cdot\frac{(-1)^jx^{2j+2}}{j+1}\;{dx} \\& = \int_{0}^{1}\sum_{k \ge 0}~\sum_{0 \le j \le k} \frac{(-1)^k x^{2k+2}}{j+1}\;{dx} \\& = \sum_{k \ge 0}~\sum_{0 \le j \le k} ~\int_{0}^{1}\frac{(-1)^k x^{2k+2}}{j+1}\;{dx} \\& = \sum_{k \ge 0}~\sum_{0 \le j \le k} \frac{(-1)^k}{(j+1)(2k+3)}.\end{aligned}$
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K