Sum of a Complex Fraction Sequence

Click For Summary
SUMMARY

The sum $$\sum_{x=0}^{101}\frac{\frac{2x}{101}-1}{\frac{3x^2}{10201}-\frac{3x}{101}+1}$$ evaluates to zero due to the symmetry of the numerator and denominator around the axis of symmetry at x=50. The numerator is an odd function while the denominator is an even function, which aligns with the odd function rule from integral calculus. This symmetry leads to pairs of terms that cancel each other out, confirming that the overall sum is indeed zero.

PREREQUISITES
  • Understanding of odd and even functions in calculus
  • Familiarity with summation notation and limits
  • Basic knowledge of algebraic manipulation and symmetry
  • Experience with LaTeX for mathematical expressions
NEXT STEPS
  • Study the properties of odd and even functions in more depth
  • Learn about integral calculus and its applications to symmetry
  • Explore advanced summation techniques and their proofs
  • Practice using LaTeX for complex mathematical expressions
USEFUL FOR

Mathematicians, students studying calculus, educators teaching symmetry in functions, and anyone interested in advanced summation techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find $$\sum_{x=0}^{101}\frac{\frac{2x}{101}-1}{\frac{3x^2}{10201}-\frac{3x}{101}+1}$$.
 
Physics news on Phys.org
The given sum is zero because the numerator and denominator are symmetric about the same value of x, with the numerator being odd and the denominator even with respect to this axis of symmetry. This is analogous to the odd function rule from integral calculus.
 
MarkFL said:
The given sum is zero because the numerator and denominator are symmetric about the same value of x, with the numerator being odd and the denominator even with respect to this axis of symmetry. This is analogous to the odd function rule from integral calculus.

Hey MarkFL,

You were so naughty and didn't want to play with this problem when I first asked you to solve it months ago! (Tongueout)
 
I was probably having a "bad math day" then, as it was pretty straightforward tonight to simply look at the symmetry of the summand with respect to the index of summation. While I don't recall you asking me about this before, perhaps seeing it in $\LaTeX$ made a difference too. (Mmm)
 
anemone said:
Find $$\sum_{x=0}^{101}\frac{\frac{2x}{101}-1}{\frac{3x^2}{10201}-\frac{3x}{101}+1}$$.
$$f(x)=(\frac{\frac{2x}{101}-1}{\frac{3x^2}{10201}-\frac{3x}{101}+1})\times \dfrac {10201}{10201}
=\dfrac {202x-10201}{3x^2-303x+10201}$$
let y=101-x, then x=101-y
$$f(x)=\dfrac {202(101-y)-10201}{3(101-y)^2-303(101-y)+10201}=\dfrac {10201-202y}{3y^2-303y+10201}$$
$\therefore f(0)=-f(101), f(1)=-f(100),-------,f(50)=-f(51)$
that is :
f(0)+f(101)=f(1)+f(100)=f(2)+f(99)=----------=f(50)+f(51)=0
and we get :
$$\sum_{x=0}^{101}\frac{\frac{2x}{101}-1}{\frac{3x^2}{10201}-\frac{3x}{101}+1}=0$$
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 27 ·
Replies
27
Views
792
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K