Sum of a Complex Fraction Sequence

Click For Summary

Discussion Overview

The discussion revolves around the evaluation of the sum $$\sum_{x=0}^{101}\frac{\frac{2x}{101}-1}{\frac{3x^2}{10201}-\frac{3x}{101}+1}$$. Participants explore the symmetry properties of the summand to argue for its value, focusing on theoretical reasoning and mathematical manipulation.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • Some participants assert that the sum is zero due to the symmetry of the numerator and denominator about a certain value of x, with the numerator being odd and the denominator even.
  • One participant elaborates on the symmetry by transforming the function and demonstrating that pairs of terms in the sum cancel each other out, leading to a total sum of zero.
  • A participant humorously acknowledges a previous reluctance to engage with the problem, suggesting that the presentation in LaTeX may have influenced their understanding.

Areas of Agreement / Disagreement

There appears to be a general agreement among participants that the sum evaluates to zero based on symmetry arguments, although the initial reluctance to engage with the problem indicates some level of uncertainty or differing perspectives on the approach.

Contextual Notes

The discussion does not resolve potential limitations in the assumptions regarding symmetry or the conditions under which the arguments hold, particularly in relation to the properties of the functions involved.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find $$\sum_{x=0}^{101}\frac{\frac{2x}{101}-1}{\frac{3x^2}{10201}-\frac{3x}{101}+1}$$.
 
Physics news on Phys.org
The given sum is zero because the numerator and denominator are symmetric about the same value of x, with the numerator being odd and the denominator even with respect to this axis of symmetry. This is analogous to the odd function rule from integral calculus.
 
MarkFL said:
The given sum is zero because the numerator and denominator are symmetric about the same value of x, with the numerator being odd and the denominator even with respect to this axis of symmetry. This is analogous to the odd function rule from integral calculus.

Hey MarkFL,

You were so naughty and didn't want to play with this problem when I first asked you to solve it months ago! (Tongueout)
 
I was probably having a "bad math day" then, as it was pretty straightforward tonight to simply look at the symmetry of the summand with respect to the index of summation. While I don't recall you asking me about this before, perhaps seeing it in $\LaTeX$ made a difference too. (Mmm)
 
anemone said:
Find $$\sum_{x=0}^{101}\frac{\frac{2x}{101}-1}{\frac{3x^2}{10201}-\frac{3x}{101}+1}$$.
$$f(x)=(\frac{\frac{2x}{101}-1}{\frac{3x^2}{10201}-\frac{3x}{101}+1})\times \dfrac {10201}{10201}
=\dfrac {202x-10201}{3x^2-303x+10201}$$
let y=101-x, then x=101-y
$$f(x)=\dfrac {202(101-y)-10201}{3(101-y)^2-303(101-y)+10201}=\dfrac {10201-202y}{3y^2-303y+10201}$$
$\therefore f(0)=-f(101), f(1)=-f(100),-------,f(50)=-f(51)$
that is :
f(0)+f(101)=f(1)+f(100)=f(2)+f(99)=----------=f(50)+f(51)=0
and we get :
$$\sum_{x=0}^{101}\frac{\frac{2x}{101}-1}{\frac{3x^2}{10201}-\frac{3x}{101}+1}=0$$
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
499
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K