MHB Sum of a discrete finite sequence

bincy
Messages
38
Reaction score
0
Hii everyone,

I have a sequence {ai,1<= i <=k} where i know the sum of this sequence(say x).
I want to know the sum of another sequence {bi, 1<=i <=k}(at least a tight upper bound) where bi=ai*(1/2^i).

Or in other words, if you know the sum of the ratio sequence and sum of 1 sequence, how to find out the sum of the other sequence(can we)?

I tried using the convexity of 1/2^i, but couldn't get anything.

regards,
Bincy.
 
Physics news on Phys.org
bincybn said:
Hii everyone,

I have a sequence {ai,1<= i <=k} where i know the sum of this sequence(say x).
I want to know the sum of another sequence {bi, 1<=i <=k}(at least a tight upper bound) where bi=ai*(1/2^i).

Or in other words, if you know the sum of the ratio sequence and sum of 1 sequence, how to find out the sum of the other sequence(can we)?

I tried using the convexity of 1/2^i, but couldn't get anything.
In general, there is very little that you can say about $\sum_{i=1}^ka_i/2^i$.

I assume that the terms in the sequence $\{a_i\}$ are non-negative (if not, then there is even less that you can say about the sum of the series). If you think about the possible values of the $a_i$ (subject to the condition that their sum is $x$), then at one extreme you could have $a_1=x$ and $a_i=0$ for $2\leqslant i\leqslant k$. At the other extreme you could have $a_k=x$ and $a_i=0$ for $1\leqslant i\leqslant k-1$. In the first case, $\sum_{i=1}^ka_i/2^i = x/2$. In the second case, $\sum_{i=1}^ka_i/2^i = x/2^k$. So (unless you have further in formation about the $a_i$), all you can say about the sum of the $b_i$ is that it lies between $x/2^k$ and $x/2$. Presumably that does no qualify as a tight bound!
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top