POTW Sum of an Alternating Series

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Series Sum
Click For Summary
The discussion centers on finding the sum of the alternating series $$\sum_{n = 0}^\infty \frac{(-1)^n}{(2n+1)^3}$$ and various methods to prove it. Participants explore the use of Fourier transforms and properties of periodic delta functions to derive the sum, which is confirmed to be $$\frac{\pi^3}{32}$$. The conversation highlights the versatility of approaches, including integration techniques and the application of polylogarithm functions. Additionally, the importance of justifying the interchange of summation and integration is emphasized for accurate results. The thread concludes with an affirmation of the sum's value and its derivation through multiple methods.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Find, with proof, the sum of the alternating series $$\sum_{n = 0}^\infty \frac{(-1)^n}{(2n+1)^3}$$
 
  • Like
Likes julian, Greg Bernhardt and topsquark
Physics news on Phys.org
First write:

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} = - \sum_{n=1}^\infty \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3}
\end{align*}

The method of evaluation employs the fact that the function

\begin{align*}
\frac{\sin \dfrac{\pi z}{2}}{\sin \pi z}
\end{align*}

has simple poles at all integer values except when ##\sin \dfrac{\pi z}{2} = 0##. This allows us to write

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} & = - \sum_{n=1}^\infty \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3}
\nonumber \\
& = - \frac{1}{2i} \oint_C \dfrac{\sin \dfrac{\pi z}{2}}{z^3 \sin \pi z} dz
\end{align*}

where the contour ##C## is defined in Fig 1. Note

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} & = - \sum_{n=1}^\infty \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3}
\nonumber \\
& = - \frac{1}{2} \sum_{n=1}^\infty \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3} - \frac{1}{2} \sum_{n=-1}^{-\infty} \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3}
\nonumber \\
& = - \frac{1}{4i} \oint_{C+C'} \dfrac{\sin \dfrac{\pi z}{2}}{z^3 \sin \pi z} dz
\end{align*}

where the contour ##C'## is defined in Fig 1.

contour.png


Fig 1.

Consider the square contour shown in Fig 2 with corners at ##(N+\frac{1}{2}) (1+i)##, ##(N+\frac{1}{2}) (-1+i)##, ##(N+\frac{1}{2}) (-1-i)## and ##(N+\frac{1}{2}) (1-i)##. This contour encloses all the points at ##-N, - (N-1) , \dots, -1,0,1, \dots , N-1,N##. We will prove that the integral

\begin{align*}
\oint_{C_N} \dfrac{\sin \dfrac{\pi z}{2}}{z^3 \sin \pi z} dz \qquad (*)
\end{align*}

vanishes ##N \rightarrow \infty##. This will imply

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} & = - \sum_{n=1}^\infty \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3}
\nonumber \\
& = - \frac{1}{4i} \oint_{C_0} \dfrac{\sin \dfrac{\pi z}{2}}{z^3 \sin \pi z} dz
\nonumber \\
& = - \frac{1}{8i} \oint_{C_0} \dfrac{1}{z^3 \cos \dfrac{\pi z}{2}} dz \qquad (**)
\end{align*}

where ##C_0## is an infinitesimal clockwise contour around the origin.

square.jpg

Fig 2.

We start by showing that the value of ##\left| \sin \dfrac{\pi z}{2} \csc (\pi z) \right|## around the square ##C_N## is bounded by a constant that is independent of ##N##.

We write ##z=x+iy##

Case 1: ##y > \frac{1}{2}##, we have

\begin{align*}
\left| \dfrac{\sin \dfrac{\pi z}{2}}{\sin \pi z} \right| & = \left| \dfrac{e^{i \pi z/2} - e^{-i \pi z/2}}{e^{i \pi z} - e^{-i \pi z}} \right|
\nonumber \\
& \leq \dfrac{|e^{i \pi z/2}| + |e^{-i \pi z/2}|}{|e^{-i \pi z}| - |e^{i \pi z}|}
\nonumber \\
& = \dfrac{|e^{i \pi x/2 - \pi y/2}| + |e^{-i \pi x + \pi y}|}{|e^{-i \pi x + \pi y}| - |e^{i \pi x - \pi y}|}
\nonumber \\
& = \dfrac{e^{\pi y/2} + e^{-\pi y/2}}{e^{\pi y} - e^{-\pi y}}
\nonumber \\
& = \dfrac{e^{-\pi y/2} + e^{-3\pi y/2}}{1 - e^{- 2 \pi y}}
\nonumber \\
& \leq \dfrac{e^{-\pi y/4} + e^{-3\pi y/4}}{1 - e^{- \pi}} \qquad \text{ as we are taking } y > \frac{1}{2}
\nonumber \\
& =: A_1
\end{align*}

Case 2: ##y < - \frac{1}{2}##, we have

\begin{align*}
\left| \dfrac{\sin \dfrac{\pi z}{2}}{\sin \pi z} \right| & \leq \dfrac{|e^{i \pi x/2 - \pi y/2}| + |e^{-i \pi x + \pi y}|}{|e^{i \pi x - \pi y}| - |e^{-i \pi x + \pi y}|}
\nonumber \\
& = \dfrac{e^{\pi y/2} + e^{-\pi y/2}}{e^{-\pi y} - e^{\pi y}}
\nonumber \\
& = \dfrac{e^{\pi y/2} + e^{3\pi y/2}}{1 - e^{2 \pi y}}
\nonumber \\
& \leq \dfrac{e^{-\pi y/4} + e^{-3\pi y/4}}{1 - e^{- \pi}} \qquad \text{ as we are taking } y < - \frac{1}{2}
\nonumber \\
& =: A_1
\end{align*}

Case 3: ##-\frac{1}{2} \leq y \leq \frac{1}{2}##. We consider ##z = N +\frac{1}{2} + iy##. We make repeated use of ##\sin (\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta## and ##\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta##. In particular we will use:

\begin{align*}
\sin (\pi (N + \frac{1}{2} + i y)) = \cos (\pi N) \sin (\pi/2 + i \pi y) = (-1)^N \cosh (\pi y)
\end{align*}

We have:

\begin{align*}
& \; \left| \dfrac{\sin \dfrac{\pi z}{2}}{\sin \pi z} \right|
\nonumber \\
& = \left| \dfrac{\sin (\pi (N + \frac{1}{2} + i y)/2)}{\sin (\pi (N + \frac{1}{2} + i y))} \right|
\nonumber \\
& = \dfrac{| \cos (\pi N /2) \sin (\pi/4+iy/2) + \sin (\pi N /2) \cos (\pi/4+iy/2) |}{\cosh (\pi y)}
\nonumber \\
& \leq \dfrac{| \cos (\pi N/2) \sin (\pi/4+iy/2)}{\cosh (\pi y)} + \dfrac{| \sin (\pi N/2) \cos (\pi /4+iy/2) |}{\cosh (\pi y)}
\nonumber \\
& \leq \dfrac{| \sin (\pi/4+iy/2) |}{\cosh (\pi y) |} + \dfrac{| \cos (\pi/4+iy/2) |}{\cosh (\pi y) |}
\nonumber \\
& \leq \dfrac{| \cos (\pi/4) \sin (iy/2) + \sin (\pi/4) \cos (iy/2) |}{\cosh (\pi y)} + \dfrac{| \cos (\pi/4) \cos (iy/2) - \sin (\pi/4) \sin (iy/2) |}{\cosh (\pi y)}
\nonumber \\
& \leq 2 \dfrac{| \sinh (y/2) |}{\cosh (\pi y)} + 2 \dfrac{\cosh (y/2)}{\cosh (\pi y)}
\nonumber \\
& = 2 \dfrac{| e^{y/2} - e^{-y/2} |}{e^{\pi y} + e^{-\pi y}} + 2 \dfrac{e^{y/2} + e^{-y/2}}{e^{\pi y} + e^{-\pi y}}
\nonumber \\
& \leq 4 \dfrac{e^{y/2} + e^{-y/2}}{e^{\pi y} + e^{-\pi y}}
\nonumber \\
& = 4 \dfrac{e^{y (1/2 - \pi)} + e^{-y (1/2 + \pi)}}{1 + e^{-\pi y}}
\nonumber \\
& \leq \dfrac{8 (e^{1/4} + e^{-1/4}) e^{\pi/2}}{1 + e^{-\pi / 2}} \qquad \text{ as we are taking } -\frac{1}{2} \leq y \leq \frac{1}{2}
\nonumber \\
& =: A_2
\end{align*}

When ##z = -N - \frac{1}{2} + iy##, we have similarly:

\begin{align*}
\left| \dfrac{\sin \dfrac{\pi z}{2}}{\sin \pi z} \right| & = \left| \dfrac{\sin ((-N - \frac{1}{2} + i y)/2)}{\sin (\pi (-N - \frac{1}{2} + i y))} \right|
\nonumber \\
& \leq A_2
\end{align*}

So choose ##A## such that ##A > \max \{ A_1 , A_2 \}##. Then we have ##\left| \sin \dfrac{\pi z}{2} \csc (\pi z) \right| < A## on ##C_N## with an ##A## independent of ##N##. Then

\begin{align*}
\left| \oint_{C_N} \csc (\pi z) \sin \dfrac{\pi z}{2} \frac{1}{z^3} dz \right| \leq \frac{A}{N^3} (8N+4)
\end{align*}

as ##(8N+4)## is the length of the curve ##C_N##. Letting ##N \rightarrow \infty## we get that the integral, ##(*)##, vanishes. This establishes ##(**)##. We now use ##(**)## to evaluate the sum. The residue is obtained from

\begin{align*}
\dfrac{1}{z^3 \cos \dfrac{\pi z}{2}} & = \dfrac{1}{z^3 \left( 1 - \dfrac{1}{2!} \dfrac{\pi^2 z^2}{4} \right) + \cdots}
\nonumber \\
& = \frac{1}{z^3} \left( 1 + \dfrac{\pi^2 z^2}{8} \right) + \cdots
\nonumber \\
& = \frac{1}{z^3} + \dfrac{\pi^2}{8 z} + \cdots
\end{align*}

So that

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} & = (-2 \pi i) \times - \frac{1}{8i} \times \dfrac{\pi^2}{8}
\nonumber \\
& = \frac{\pi^3}{32}
\end{align*}
 
Last edited:
  • Like
Likes milkism, docnet and topsquark
julian said:
First write:

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} = - \sum_{n=1}^\infty \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3}
\end{align*}

The method of evaluation employs the fact that the function

\begin{align*}
\frac{\sin \dfrac{\pi z}{2}}{\sin \pi z}
\end{align*}

has simple poles at all integer values except when ##\sin \dfrac{\pi z}{2} = 0##. This allows us to write

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} & = - \sum_{n=1}^\infty \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3}
\nonumber \\
& = - \frac{1}{2i} \oint_C \dfrac{\sin \dfrac{\pi z}{2}}{z^3 \sin \pi z} dz
\end{align*}

where the contour ##C## is defined in Fig 1. Note

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} & = - \sum_{n=1}^\infty \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3}
\nonumber \\
& = - \frac{1}{2} \sum_{n=1}^\infty \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3} - \frac{1}{2} \sum_{n=-1}^{-\infty} \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3}
\nonumber \\
& = - \frac{1}{4i} \oint_{C+C'} \dfrac{\sin \dfrac{\pi z}{2}}{z^3 \sin \pi z} dz
\end{align*}

where the contour ##C'## is defined in Fig 1.

View attachment 344267

Fig 1.

Consider the square contour shown in Fig 2 with corners at ##(N+\frac{1}{2}) (1+i)##, ##(N+\frac{1}{2}) (-1+i)##, ##(N+\frac{1}{2}) (-1-i)## and ##(N+\frac{1}{2}) (1-i)##. This contour encloses all the poles at ##-N, - (N-1) , \dots, -1,0,1, \dots , N-1,N##. We will prove that the integral

\begin{align*}
\oint_{C_N} \dfrac{\sin \dfrac{\pi z}{2}}{z^3 \sin \pi z} dz \qquad (*)
\end{align*}

vanishes ##N \rightarrow \infty##. This will imply

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} & = - \sum_{n=1}^\infty \dfrac{(-1)^n \sin \dfrac{\pi n}{2}}{n^3}
\nonumber \\
& = - \frac{1}{4i} \oint_{C_0} \dfrac{\sin \dfrac{\pi z}{2}}{z^3 \sin \pi z} dz
\nonumber \\
& = - \frac{1}{8i} \oint_{C_0} \dfrac{1}{z^3 \cos \dfrac{\pi z}{2}} dz \qquad (**)
\end{align*}

where ##C_0## is an infinitesimal clockwise contour around the origin.

View attachment 344279
Fig 2.

We start by showing that the value of ##\left| \sin \dfrac{\pi z}{2} \csc (\pi z) \right|## around the square ##C_N## is bounded by a constant that is independent of ##N##.

We write ##z=x+iy##

Case 1: ##y > \frac{1}{2}##, we have

\begin{align*}
\left| \dfrac{\sin \dfrac{\pi z}{2}}{\sin \pi z} \right| & = \left| \dfrac{e^{i \pi z/2} - e^{-i \pi z/2}}{e^{i \pi z} - e^{-i \pi z}} \right|
\nonumber \\
& \leq \dfrac{|e^{i \pi z/2}| + |e^{-i \pi z/2}|}{|e^{-i \pi z}| - |e^{i \pi z}|}
\nonumber \\
& = \dfrac{|e^{i \pi x/2 - \pi y/2}| + |e^{-i \pi x + \pi y}|}{|e^{-i \pi x + \pi y}| - |e^{i \pi x - \pi y}|}
\nonumber \\
& = \dfrac{e^{\pi y/2} + e^{-\pi y/2}}{e^{\pi y} - e^{-\pi y}}
\nonumber \\
& = \dfrac{e^{-\pi y/2} + e^{-3\pi y/2}}{1 - e^{- 2 \pi y}}
\nonumber \\
& \leq \dfrac{e^{-\pi y/4} + e^{-3\pi y/4}}{1 - e^{- \pi}} \qquad \text{ as we are taking } y > \frac{1}{2}
\nonumber \\
& =: A_1
\end{align*}

Case 2: ##y < - \frac{1}{2}##, we have

\begin{align*}
\left| \dfrac{\sin \dfrac{\pi z}{2}}{\sin \pi z} \right| & \leq \dfrac{|e^{i \pi x/2 - \pi y/2}| + |e^{-i \pi x + \pi y}|}{|e^{i \pi x - \pi y}| - |e^{-i \pi x + \pi y}|}
\nonumber \\
& = \dfrac{e^{\pi y/2} + e^{-\pi y/2}}{e^{-\pi y} - e^{\pi y}}
\nonumber \\
& = \dfrac{e^{\pi y/2} + e^{3\pi y/2}}{1 - e^{2 \pi y}}
\nonumber \\
& \leq \dfrac{e^{-\pi y/4} + e^{-3\pi y/4}}{1 - e^{- \pi}} \qquad \text{ as we are taking } y < - \frac{1}{2}
\nonumber \\
& =: A_1
\end{align*}

Case 3: ##-\frac{1}{2} \leq y \leq \frac{1}{2}##. We consider ##z = N +\frac{1}{2} + iy##. We make repeated use of ##\sin (\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta## and ##\cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta##. In particular we will use:

\begin{align*}
\sin (\pi (N + \frac{1}{2} + i y)) = \cos (\pi N) \sin (\pi/2 + i \pi y) = (-1)^N \cosh (\pi y)
\end{align*}

We have:

\begin{align*}
& \; \left| \dfrac{\sin \dfrac{\pi z}{2}}{\sin \pi z} \right|
\nonumber \\
& = \left| \dfrac{\sin (\pi (N + \frac{1}{2} + i y)/2)}{\sin (\pi (N + \frac{1}{2} + i y))} \right|
\nonumber \\
& = \dfrac{| \cos (\pi N /2) \sin (\pi/4+iy/2) + \sin (\pi N /2) \cos (\pi/4+iy/2) |}{\cosh (\pi y)}
\nonumber \\
& \leq \dfrac{| \cos (\pi N/2) \sin (\pi/4+iy/2)}{\cosh (\pi y)} + \dfrac{| \sin (\pi N/2) \cos (\pi /4+iy/2) |}{\cosh (\pi y)}
\nonumber \\
& \leq \dfrac{| \sin (\pi/4+iy/2) |}{\cosh (\pi y) |} + \dfrac{| \cos (\pi/4+iy/2) |}{\cosh (\pi y) |}
\nonumber \\
& \leq \dfrac{| \cos (\pi/4) \sin (iy/2) + \sin (\pi/4) \cos (iy/2) |}{\cosh (\pi y)} + \dfrac{| \cos (\pi/4) \cos (iy/2) - \sin (\pi/4) \sin (iy/2) |}{\cosh (\pi y)}
\nonumber \\
& \leq 2 \dfrac{| \sinh (y/2) |}{\cosh (\pi y)} + 2 \dfrac{\cosh (y/2)}{\cosh (\pi y)}
\nonumber \\
& = 2 \dfrac{| e^{y/2} - e^{-y/2} |}{e^{\pi y} + e^{-\pi y}} + 2 \dfrac{e^{y/2} + e^{-y/2}}{e^{\pi y} + e^{-\pi y}}
\nonumber \\
& \leq 4 \dfrac{e^{y/2} + e^{-y/2}}{e^{\pi y} + e^{-\pi y}}
\nonumber \\
& = 4 \dfrac{e^{y (1/2 - \pi)} + e^{-y (1/2 + \pi)}}{1 + e^{-\pi y}}
\nonumber \\
& \leq \dfrac{8 (e^{1/4} + e^{-1/4}) e^{\pi/2}}{1 + e^{-\pi / 2}} \qquad \text{ as we are taking } -\frac{1}{2} \leq y \leq \frac{1}{2}
\nonumber \\
& =: A_2
\end{align*}

When ##z = -N - \frac{1}{2} + iy##, we have similarly:

\begin{align*}
\left| \dfrac{\sin \dfrac{\pi z}{2}}{\sin \pi z} \right| & = \left| \dfrac{\sin ((-N - \frac{1}{2} + i y)/2)}{\sin (\pi (-N - \frac{1}{2} + i y))} \right|
\nonumber \\
& \leq A_2
\end{align*}

So choose ##A## such that ##A > \max \{ A_1 , A_2 \}##. Then we have ##\left| \sin \dfrac{\pi z}{2} \csc (\pi z) \right| < A## on ##C_N## with an ##A## independent of ##N##. Then

\begin{align*}
\left| \oint_{C_N} \csc (\pi z) \sin \dfrac{\pi z}{2} \frac{1}{z^3} dz \right| \leq \frac{\pi A}{N^3} (8N+4)
\end{align*}

as ##(8N+4)## is the length of the curve ##C_N##. Letting ##N \rightarrow \infty## we get that the integral, ##(*)##, vanishes. This establishes ##(**)##. We now use ##(**)## to evaluate the sum. The residue is obtained from

\begin{align*}
\dfrac{1}{z^3 \cos \dfrac{\pi z}{2}} & = \dfrac{1}{z^3 \left( 1 - \dfrac{1}{2!} \dfrac{\pi^2 z^2}{4} \right) + \cdots}
\nonumber \\
& = \frac{1}{z^3} \left( 1 + \dfrac{\pi^2 z^2}{8} \right) + \cdots
\nonumber \\
& = \frac{1}{z^3} + \dfrac{\pi^2}{8 z} + \cdots
\end{align*}

So that

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} & = (-2 \pi i) \times - \frac{1}{8i} \times \dfrac{\pi^2}{8}
\nonumber \\
& = \frac{\pi^3}{32}
\end{align*}
That's quite a lengthy solution! It's also the correct solution according to Wolfram :)
 
Inspired by answer of julian, let me show my sketch using Fourier transform and distribution.
Let us say the given sum S
S=Im \sum_{n=1}^\infty \frac{e^\frac{n\pi i}{2}}{n^3}
\frac{8}{\pi^3}S=Im \sum_{n=1}^\infty \int_{-\infty}^{\infty} dx \ x^{-3}e^{xi} \delta(x-\frac{n\pi}{2})
= Im \frac{1}{2 \pi } \sum_{n=1}^\infty \int_{-\infty}^{\infty} dx \int_{-\infty}^{\infty} dp \ x^{-3}e^{xi} e^{pxi}e^ {-ip\frac{n\pi}{2}}
= Im \sum_{n=1}^\infty \frac{1}{2 \pi }\int_{-\infty}^{\infty} dp \ e^ {-i(p-1)\frac{n\pi}{2}} ( \int_{-\infty}^{\infty} dx \ x^{-3} e^{pxi})
= Im \sum_{n=1}^\infty \frac{1}{2 \pi }\int_{-\infty}^{\infty} dp \ e^ {-i(p-1)\frac{n\pi}{2}} i \frac{\pi}{2} p^2 sgn(p)
=\frac{1}{4}Im\ i\int_{-\infty}^{\infty} dp \ (\sum_{n=1}^\infty e^ {-i(p-1)\frac{n\pi} {2}} ) p^2 sgn(p) = \frac{1}{4}
I am sure that the sum plays a delta function role but not sure it is correct coefficient. If it is OK
S=\frac{\pi^3}{32}
 
Last edited:
We have

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} & = \sum_{n=1}^\infty \dfrac{\sin \dfrac{\pi n}{2}}{n^3}
\nonumber \\
& = \frac{1}{2} \sum_{n=1}^\infty \dfrac{\sin \dfrac{\pi n}{2}}{n^3} \int_0^\infty e^{-y} y^2 dy
\nonumber \\
& = \frac{1}{2} \sum_{n=1}^\infty \sin \dfrac{\pi n}{2} \int_0^\infty e^{-nx} x^2 dx
\nonumber \\
& = \frac{1}{4i} \sum_{n=1}^\infty \int_0^\infty (e^{-nx + \frac{i\pi n}{2}} - e^{-nx + \frac{-i\pi n}{2}}) x^2 dx
\nonumber \\
& = \frac{1}{4i} \int_0^\infty \left( \dfrac{1}{1-e^{-x + \frac{i\pi}{2}}} - \dfrac{1}{1-e^{-x + \frac{-i\pi}{2}}} \right) x^2 dx
\nonumber \\
& = \frac{1}{2} \int_0^\infty \dfrac{x^2} {e^x + e^{-x}} dx
\nonumber \\
& = \frac{1}{4} \int_{-\infty}^\infty \dfrac{x^2} {e^x + e^{-x}} dx
\end{align*}

We can write

\begin{align*}
\int_{-\infty}^\infty \dfrac{x^2} {e^x + e^{-x}} dx & = \frac{\partial^2}{\partial \alpha^2} \left. \int_{-\infty}^\infty \dfrac{e^{\alpha x}} {e^x + e^{-x}} dx \right|_{\alpha =0}
\end{align*}

We will evaluate

\begin{align*}
\int_{-\infty}^\infty \dfrac{e^{\alpha x}} {e^x + e^{-x}} dx
\end{align*}

for ##-\frac{1}{2} \leq \alpha \leq \frac{1}{2}## by considering the rectangular contour integral (see figure) of

\begin{align*}
\oint_C \dfrac{e^{\alpha z}} {e^z + e^{-z}} dz
\end{align*}

rectangle.jpg


The integral along the vertical edges vanishes as:

\begin{align*}
f(z) = \dfrac{e^{\alpha (x+iy)}}{e^{x+iy} + e^{-x-iy}} =
\begin{cases}
e^{(\alpha - 1) (x+iy)} & x \rightarrow \infty \\
e^{(\alpha + 1) (x+iy)} & x \rightarrow - \infty \\
\end{cases}
\end{align*}

So that

\begin{align*}
\oint_C \dfrac{e^{\alpha z}}{e^z + e^{-z}} dz & = \int_{-\infty}^\infty \dfrac{e^{\alpha x}}{e^x + e^{-x}} dx + e^{\alpha \pi i} \int_{-\infty+ i \pi}^{\infty + i \pi} \dfrac{e^{\alpha x}}{e^x + e^{-x}} dx
\nonumber \\
& = (1 + e^{\alpha \pi i}) \int_{-\infty}^\infty \dfrac{e^{\alpha x}} {e^x + e^{-x}} dx
\end{align*}

and so

\begin{align*}
\frac{1}{4} \int_{-\infty}^\infty \dfrac{e^{\alpha x}} {e^x + e^{-x}} dx & = \frac{i \pi}{2(1 + e^{\alpha \pi i}) } \frac{1}{2 \pi i} \oint_C \dfrac{e^{\alpha z}}{e^z + e^{-z}} dz
\nonumber \\
& = \frac{i \pi}{2(1 + e^{\alpha \pi i})} \lim_{z \rightarrow \frac{i \pi}{2}} (z - \frac{i \pi}{2}) \dfrac{e^{\alpha z}}{e^z + e^{-z}}
\nonumber \\
& = \frac{i \pi}{2(1 + e^{\alpha \pi i})} \lim_{z \rightarrow \frac{i \pi}{2}} \dfrac{e^{\alpha z}}{e^z - e^{-z}}
\nonumber \\
& = \frac{\pi}{4(1 + e^{\alpha \pi i})} e^{\alpha \frac{i \pi}{2}}
\nonumber \\
& = \frac{\pi}{8} \frac{1} {\cos (\dfrac{\alpha \pi}{2})} .
\end{align*}

We then have

\begin{align*}
\frac{1}{4} \int_{-\infty}^\infty \dfrac{x^2} {e^x + e^{-x}} dx & = \frac{\pi}{8} \frac{\partial^2}{\partial \alpha^2} \left. \frac{1}{\cos (\dfrac{\alpha \pi}{2})} \right|_{\alpha =0}
\nonumber \\
& = \frac{\pi^2}{16} \frac{\partial}{\partial \alpha} \left. \frac{\sin (\dfrac{\alpha \pi}{2})}{\cos^2 (\dfrac{\alpha \pi}{2})} \right|_{\alpha =0}
\nonumber \\
& = \frac{\pi^3}{32} \left. \frac{\cos^3 (\dfrac{\alpha \pi}{2}) + 2 \sin^2 (\dfrac{\alpha \pi}{2}) \cos (\dfrac{\alpha \pi}{2})}{\cos^4 (\dfrac{\alpha \pi}{2})} \right|_{\alpha =0}
\nonumber \\
& = \frac{\pi^3}{32} .
\end{align*}

So finally,

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} = \frac{\pi^3}{32} .
\end{align*}
 
Last edited:
  • Like
Likes anuttarasammyak and topsquark
@anuttarasammyak. Is the sum ##Re \sum_{n=1}^\infty e^{-i(p-1) \frac{n \pi}{2}}## related to the periodic delta function though? With period 4? And so the integral ##\int_{-\infty}^\infty dp \cdots## wouldn't pick out a single value of ##p##?

EDIT: Thinking about some more. Put ##p'=p-1## and plug in you are dealing with the periodic delta function results in: ##\int_{-\infty}^\infty dp' \sum_{m=-\infty}^\infty \delta (p'+4m) (p'+1)^2 sgn(p'+1)##. So terms negative in ##p'## don't cancel with terms positive in ##p'##.
 
Last edited:
julian said:
@anuttarasammyak. Is the sum Re∑n=1∞e−i(p−1)nπ2 related to the periodic delta function though? With period 4? And so the integral ∫−∞∞dp⋯ wouldn't pick out a single value of p?
Thanks for pointing out the difficulty. From my last line
\frac{8}{\pi^3}S=\frac{1}{2}\int_{0}^{\infty} p^2 dp \ (\sum_{n=1}^\infty \sin \frac{n\pi} {2}\sin \frac{pn\pi} {2} )
In here
\sum_{n=1}^\infty \sin \frac{n\pi} {2}\sin \frac{pn\pi} {2}=\frac{1}{2}\sum_{n=1}^\infty [\cos \frac{(p-1)n\pi} {2}-\cos \frac{(p+1)n\pi}{2}]
As you pointed out not only p=1 but p=4m+1 is picked up. Performing integral by parts now I observe that my attempt was not solving but just transforming the appearence of the problem.
 
Last edited:
I would try another transformation
S=Re(-i\sum_{n=1}^\infty \frac{e^{\frac{\pi n i}{2}}}{n^3})
=\lim_{x\rightarrow 1} Re(-i (\frac{\pi i}{2})^3 \int dx \int dx \int dx \sum_{n=1}^\infty e^{\frac{\pi nx i}{2}})
with convention that all the integral constants are zero.
S=\frac{\pi^3}{8}Re( - \lim_{x\rightarrow 1} \int dx \int dx \int dx \frac{1}{e^{\frac{-i \pi x}{2}-1}})
=\frac{\pi^3}{8}Re( - \lim_{x\rightarrow 1} \int dx \int dx \frac{2i}{\pi} \log(1-e^{\frac{i \pi x}{2}}))With help of wolfram introducing polylogarithm function
=\frac{\pi^3}{8}Re( - \lim_{x\rightarrow 1} \int dx \frac{-4}{\pi^2} Li_2(e^{\frac{i \pi x}{2}}))
=\frac{\pi^3}{8}Re( - \lim_{x\rightarrow 1} \frac{8i}{\pi^3} Li_3(e^{\frac{i \pi x}{2}}))
=Re(-iLi_3(i))
it seems coming back to the original problem again. According to wolfram
=Re(\frac{\pi^3}{32}-\frac{3}{32}\zeta(3)i)=\frac{\pi^3}{32}
 
Last edited:
It so happens that the general sum

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^{2k+1}}
\end{align*}

for ##k=0,1,2,\dots## can be easily performed using the above method of post #5, the answer expressed in terms of Euler numbers. Which I do in this post. In post #5, however, I didn't justify interchanging a summation and integration. I do this in this post.

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^{2k+1}} & = \sum_{n=1}^\infty \dfrac{\sin \dfrac{\pi n}{2}}{n^{2k+1}}
\nonumber \\
& = \frac{1}{(2k)!} \sum_{n=1}^\infty \dfrac{\sin \dfrac{\pi n}{2}}{n^{2k+1}} \int_0^\infty e^{-y} y^{2k} dy
\nonumber \\
& = \frac{1}{(2k)!} \sum_{n=1}^\infty \sin \dfrac{\pi n}{2} \int_0^\infty e^{-nx} x^{2k} dx
\nonumber \\
& = \frac{1}{(2k)! 2i} \sum_{n=1}^\infty \int_0^\infty (e^{-nx + \frac{i\pi n}{2}} - e^{-nx + \frac{-i\pi n}{2}}) x^2 dx
\nonumber \\
& = \frac{1}{(2k)! 2i} \int_0^\infty \left( \dfrac{1}{1-e^{-x + \frac{i\pi}{2}}} - \dfrac{1}{1-e^{-x + \frac{-i\pi}{2}}} \right) x^{2k} dx
\nonumber \\
& = \frac{1}{(2k)!} \int_0^\infty \dfrac{x^{2k}} {e^x + e^{-x}} dx
\nonumber \\
& = \frac{1}{(2k)! 2} \int_{-\infty}^\infty \dfrac{x^{2k}} {e^x + e^{-x}} dx
\end{align*}

In post #5 I proved

\begin{align*}
\frac{1}{2} \int_{-\infty}^\infty \dfrac{e^{\alpha x}} {e^x + e^{-x}} dx & = \frac{\pi}{4} \frac{1}{\cos (\dfrac{\alpha \pi}{2})} .
\end{align*}

Using this, we have

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^{2k+1}} & = \frac{1}{(2k)! 2} \int_{-\infty}^\infty \dfrac{x^{2k}} {e^x + e^{-x}} dx
\nonumber \\
& = \frac{\pi}{(2k)! 4} \frac{\partial^{2k}}{\partial \alpha^{2k}} \left. \frac{1}{\cos (\dfrac{\alpha \pi}{2})} \right|_{\alpha =0} \qquad (*)
\end{align*}

Euler numbers are defined by

\begin{align*}
\frac{2}{e^t+e^{-t}} = \sum_{n=0}^\infty \dfrac{E_n}{n!} t^n .
\end{align*}

So that

\begin{align*}
\sec t = \sum_{n=0}^\infty \dfrac{(-1)^n E_{2n}}{(2n)!} t^{2n}
\end{align*}

and

\begin{align*}
\sec \dfrac{\pi t}{2} & = \sum_{n=0}^\infty \dfrac{(-1)^n \pi^{2n} E_{2n}}{4^k (2n)!} t^{2n}
\end{align*}

Using this in ##(*)##, results in:

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^{2k+1}} & = \frac{\pi}{(2k)! 4} \frac{\partial^{2k}}{\partial \alpha^{2k}} \left. \frac{1}{\cos (\dfrac{\alpha \pi}{2})} \right|_{\alpha =0}
\nonumber \\
& = \pi^{2k+1} \dfrac{(-1)^k E_{2k}}{(2k)! 4^{k+1}}
\end{align*}

The first few Euler numbers are ##E_0=1##, ##E_2=-1##, and ##E_4=5##.

Interchanging summation and integration

Note in the above, I made an interchange of summation and integration. This needs to be justified.

Case ##k>0##:

As

\begin{align*}
\frac{1}{(2k)!} \sum_{n=1}^\infty \int_0^\infty \left| \sin \dfrac{\pi n}{2} x^{2k} e^{-nx} \right| dx & = \sum_{n=0}^\infty \frac{1}{(2n+1)^{2k+1}}
\nonumber \\
& < \sum_{n=0}^\infty \frac{1}{(2n+1)^2}
\nonumber \\
& = \sum_{n=1}^\infty \frac{1}{n^2} - \sum_{n=1}^\infty \frac{1}{(2n)^2}
\nonumber \\
& = (1 - 2^{-2}) \sum_{n=1}^\infty \frac{1}{n^2}
\nonumber \\
& < (1 - 2^{-2}) (1 + \lim_{N \rightarrow \infty} \sum_{n=2}^N \frac{1}{n (n-1)} )
\nonumber \\
& < (1 - 2^{-2}) (1 + \lim_{N \rightarrow \infty} \sum_{n=2}^N \left( \frac{1}{n-1} - \frac{1}{n} \right) )
\nonumber \\
& = (1 - 2^{-2}) ( 1 + 1 - \lim_{N \rightarrow \infty} \frac{1}{N}) = (1 - 2^{-2}) 2 < \infty
\end{align*}

you can use Fubini to justify interchanging summation and integration:

\begin{align*}
\sum_{n=1}^\infty \int_0^\infty \sin \dfrac{\pi n}{2} x^{2k} e^{-nx} dx = \int_0^\infty \sum_{n=1}^\infty \sin \dfrac{\pi n}{2} x^{2k} e^{-nx} dx .
\end{align*}

Case ##k=0## (Leibniz formula for ##\pi##):

As

\begin{align*}
\sum_{n=1}^\infty \int_0^\infty \left| \sin \dfrac{\pi n}{2} e^{-nx} \right| dx = \sum_{n=0}^\infty \frac{1}{2n+1} = \infty
\end{align*}

you can't use Fubini to justify this interchange. An equivalent check:

\begin{align*}
\int_0^\infty \sum_{n=1}^\infty \left| \sin \dfrac{\pi n}{2} e^{-nx} \right| dx & = \int_0^\infty (e^{-x} + e^{-3} + e^{-5x} + \cdots) dx
\nonumber \\
& = \int_0^\infty \dfrac{1}{e^x-e^{-x}} dx
\nonumber \\
& = \left[ \frac{1}{2} \ln \left( \dfrac{e^{x/2} - e^{-x/2}}{e^{x/2} + e^{-x/2}} \right) \right]_0^\infty = \infty
\end{align*}


You can, however, use the dominated convergence theorem to prove the interchange is legitimate. The proof for ##k \geq 0## is not much more difficult that the proof for ##k=0##, so I give the proof for ##k \geq 0##.

Using the dominated convergence theorem ##k \geq 0##:

I now justify interchanging summation and integration using the dominated convergence theorem. Define ##f_N (x) = \sum_{n=1}^N \sin \dfrac{\pi n}{2} x^{2k} e^{-nx}##. Then, for appropriate integers ##\ell,\ell'## taken from ##1,2, \dots##, we have

\begin{align*}
f_N (x) & =
\begin{cases}
(e^{-x} - e^{-3x} + e^{-5x} - e^{-7x} + \cdots + e^{-(4\ell-3)x}) x^{2k} & \text{ odd number of terms} \\
(e^{-x} - e^{-3x} + e^{-5x} - e^{-7x} + \cdots - e^{-(4\ell'-1)x}) x^{2k} & \text{ even number of terms} \\
\end{cases}
\nonumber \\
& =
\begin{cases}
e^{-x} \dfrac{1+e^{-(4\ell-1)x}}{1+e^{-2x}} x^{2k} & \text{ odd number of terms} \\
e^{-x} \dfrac{1-e^{-(4\ell'+1)x}}{1+e^{-2x}} x^{2k} & \text{ even number of terms} \\
\end{cases}
\end{align*}

So the limit function for ##x > 0## is

\begin{align*}
\lim_{N \rightarrow \infty} f_N(x) = f(x) = \dfrac{x^{2k}}{e^x+e^{-x}}
\end{align*}

So ##f_N(x)## converges to the function ##f(x)## except at ##x=0##:

\begin{align*}
\lim_{N \rightarrow \infty} |f(x) - f_N (x)| & =
\begin{cases}
\lim_{\ell \rightarrow \infty} e^{-x} \dfrac{e^{-(4\ell-1)x}}{1+e^{-2x}} x^{2k} = 0 & \text{ odd number of terms} \\
\lim_{\ell' \rightarrow \infty} e^{-x} \dfrac{e^{-(4\ell'+1)x}}{1+e^{-2x}} x^{2k} = 0 & \text{ even number of terms} \\
\end{cases}
\end{align*}

It is not a problem that you don't have convergence at the single point ##x=0##?

Also,

\begin{align*}
0 \leq f_N (x)\leq \dfrac{1+e^{-2x}}{1+e^{-2x}} e^{-x} x^{2k} = x^{2k} e^{-x}
\end{align*}

So

\begin{align*}
|f_N (x)| \leq x^{2k} e^{-x} = g(x)
\end{align*}

The function ##g(x)## is integrable. By the dominated convergence theorem

\begin{align*}
\lim_{N \rightarrow \infty} \int_0^\infty \sum_{n=1}^N \sin \dfrac{\pi n}{2} e^{-nx} dx = \int_0^\infty \lim_{N \rightarrow \infty} \sum_{n=1}^N \sin \dfrac{\pi n}{2} e^{-nx} dx
\end{align*}
 
Last edited:
  • #10
This is a different solution method to the ones I've already given. The general sum

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^{2k+1}}
\end{align*}

for ##k = 0,1,2, \dots## can be obtained from the partial fraction expansion for ##\pi \sec \pi x##.

The generating function for Euler numbers is

\begin{align*}
\frac{2}{e^x+e^{-x}} = \sum_{k=0}^\infty \dfrac{E_{2k}}{(2k)!} x^{2k} \qquad (*)
\end{align*}

We have the partial fraction expansion (derived below)

\begin{align*}
\pi \sec \pi x & = \sum_{n=0}^\infty (-1)^n \dfrac{2n+1}{(n+\frac{1}{2})^2 - x^2}
\nonumber \\
& = 4 \sum_{n=0}^\infty (-1)^n \dfrac{2n+1}{(2n+1)^2 - 4x^2}
\end{align*}

From which we have

\begin{align*}
\text{sech } x & = \frac{4}{\pi} \sum_{n=0}^\infty (-1)^n \dfrac{2n+1}{(n+\frac{1}{2})^2 + \frac{x^2}{\pi^2}}
\nonumber \\
& = 4 \pi \sum_{n=0}^\infty (-1)^n \dfrac{2n+1}{(2n+1)^2 \pi^2 + x^2}
\end{align*}

The ##n##th term in this infinite sum is just the geometric expansion:

\begin{align*}
\frac{4}{\pi} (-1)^n \times \frac{1}{2n+1} \sum_{k=0}^\infty \left( \dfrac{-4 x^2}{(2n+1)^2 \pi^2} \right)^k & = \frac{4}{\pi} (-1)^n \times \frac{1}{2n+1} \dfrac{1}{ 1+ \dfrac{4x^2}{(2n+1)^2 \pi^2} }
\nonumber \\
& = 4 \pi (-1)^n \dfrac{2n+1}{(2n+1)^2 \pi^2 + 4x^2}
\end{align*}

Substituting this into the expression for ##\text{sech } x##,

\begin{align*}
\text{sech } x & = \frac{4}{\pi} \sum_{n=0}^\infty (-1)^n \frac{1}{2n+1} \sum_{k=0}^\infty \left( \dfrac{-4 x^2}{(2n+1)^2 \pi^2} \right)^k
\nonumber \\
& = \sum_{n=0}^\infty (-1)^n \sum_{k=0}^\infty (-1)^k \dfrac{4^{k+1}}{(2n+1)^{2k+1} \pi^{2k+1}} x^{2k}
\nonumber \\
& = \sum_{k=0}^\infty (-1)^k \sum_{n=0}^\infty (-1)^n \dfrac{4^{k+1}}{(2n+1)^{2k+1} \pi^{2k+1}} x^{2k}
\end{align*}

Comparing this to ##(*)##,

\begin{align*}
\sum_{k=0}^\infty (-1)^k \sum_{n=0}^\infty (-1)^n \dfrac{4^{k+1}}{(2n+1)^{2k} \pi^{2k+1}} x^{2k} = \sum_{k=0}^\infty \dfrac{E_{2k}}{(2k)!} x^{2k}
\end{align*}

and equating coefficients,

\begin{align*}
(-1)^k \sum_{n=0}^\infty (-1)^n \dfrac{4^{k+1}}{(2n+1)^{2k+1} \pi^{2k+1}} = \dfrac{E_{2k}}{(2k)!}
\end{align*}

or

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^{2k+1}} = \pi^{2k+1} \dfrac{(-1)^k E_{2k}}{4^{k+1} (2k)!}
\end{align*}

For ##k=1##, and using ##E_2=-1##, we have

\begin{align*}
\sum_{n=0}^\infty \dfrac{(-1)^n}{(2n+1)^3} = \dfrac{\pi^3}{32} .
\end{align*}


Proving partial fraction expansion:

You can derive the partial fraction expansion for trigonometric functions using the complex contour integration technique I used in post #2 (see my notes here for details). Instead I derive the partial fraction expansion for ##\pi \sec \pi x## another way.

I know of the following proof for the partial fraction expansion for ##\pi \cot \pi x##: Write ##g(y) = \cos (xy)## as the Fourier series

\begin{align*}
g(y) = \frac{a_0}{2} + \sum_{n=1}^\infty a_n \cos (ny)
\end{align*}

for ##-\pi \leq y \leq \pi##. Doing the calculation of the Fourier coefficients using trig identities ##\cos \alpha \cos \beta = \frac{1}{2} [\cos (\alpha - \beta) + \cos (\alpha - \beta)]## and ##\sin (\alpha + \beta) = \cos \alpha \sin \beta + \sin \alpha \cos \beta##, you obtain

\begin{align*}
a_n & = \frac{1}{\pi} \dfrac{2x \sin (x \pi) (-1)^n}{x^2-n^2} , \qquad a_0 = \frac{1}{\pi} \dfrac{2}{x} \sin (x \pi) .
\end{align*}

So that

\begin{align*}
\cos (xy) = \dfrac{\sin (x \pi)}{x \pi} + \sum_{n=1}^\infty \frac{1}{\pi} \dfrac{2x \sin (x \pi) (-1)^n}{x^2-n^2} \cos (ny)
\end{align*}

Putting ##y=\pi##, results in

\begin{align*}
\pi \cot \pi x = \frac{1}{x} + 2x \sum_{n=1}^\infty \frac{1}{x^2-n^2}
\end{align*}

We have

\begin{align*}
2x \sum_{n=0}^\infty \frac{1}{(n+\frac{1}{2})^2 - x^2} & = 8x \sum_{n=0}^\infty \frac{1}{(2n+1)^2 - (2x)^2}
\nonumber \\
& = 8x \sum_{n=1}^\infty \frac{1}{n^2 - (2x)^2} - 8x \sum_{n=1}^\infty \frac{1}{(2n)^2 - (2x)^2}
\nonumber \\
& = 8x \sum_{n=1}^\infty \frac{1}{n^2 - (2x)^2} - 8x \frac{1}{4} \sum_{n=1}^\infty \frac{1}{n^2 - x^2}
\nonumber \\
& = 2 \left( \frac{1}{2x} - \pi \cot 2 \pi x \right) - \left( \frac{1}{x} - \pi \cot \pi x \right)
\nonumber \\
& = \pi \left( \cot \pi x - 2 \cot 2 \pi x \right)
\nonumber \\
& = \pi \left( \cot \pi x - 2 \dfrac{\cos^2 \pi x - \sin^2 \pi x}{2 \sin \pi x \cos \pi x} \right)
\nonumber \\
& = \pi \tan \pi x .
\end{align*}

So that

\begin{align*}
\pi \tan \frac{1}{2} \pi x = 4x \sum_{n=0}^\infty \frac{1}{(2n+1)^2 - x^2}
\end{align*}

We have the identities:

\begin{align*}
\frac{\pi}{\sin \pi x} & = \frac{\pi (\sin^2 \dfrac{\pi x}{2} + \cos^2 \dfrac{\pi x}{2})}{2 \sin \dfrac{\pi x}{2} \cos \dfrac{\pi x}{2}} = \frac{\pi \tan \dfrac{\pi x}{2}}{2} + \frac{\pi \cot \dfrac{\pi x}{2}}{2}
\nonumber \\
\pi \cot \pi x & = \frac{\pi (\cos^2 \dfrac{\pi x}{2} - \sin^2 \dfrac{\pi x}{2})}{2 \sin \dfrac{\pi x}{2} \cos \dfrac{\pi x}{2}} = \frac{\pi \cot \dfrac{\pi x}{2}}{2} - \frac{\pi \tan \dfrac{\pi x}{2}}{2}
\end{align*}

The first minus the second gives

\begin{align*}
\frac{\pi}{\sin \pi x} & = \pi \cot \pi x + \pi \tan \dfrac{\pi x}{2}
\end{align*}

from which we have

\begin{align*}
\frac{\pi}{\sin \pi x} & = \pi \cot \frac{1}{2} \pi x + \pi \tan \dfrac{\pi x}{2}
\nonumber \\
& = \frac{1}{x} + 2x \sum_{n=1}^\infty \frac{1}{x^2-n^2} - 4x \sum_{n=0}^\infty \frac{1}{x^2 - (2n+1)^2}
\nonumber \\
& = \frac{1}{x} + 2x \sum_{n=1}^\infty \frac{(-1)^n}{x^2 - n^2}
\nonumber \\
& = \sum_{n=-\infty}^\infty \frac{(-1)^n}{x + n}
\end{align*}

We use the identity ##\cos \pi x = \sin \pi (x + \frac{1}{2})## to obtain

\begin{align*}
\frac{\pi}{\cos \pi x} & = \sum_{n=-\infty}^\infty \frac{(-1)^n}{x + (n+\frac{1}{2})}
\nonumber \\
& = 2 \sum_{n=0}^\infty (-1)^n \dfrac{n+\frac{1}{2}}{(n+\frac{1}{2})^2 - x^2}
\end{align*}
 
Last edited:
  • #11
As I have noted in an Insight, just create the Fourier serien from the function \pi ^{2}\cdot x - x^{3}. This ends up in 12\cdot \sum_{n=1}^{\infty}\frac{\sin(n(\pi - x))}{n^{3}}. Evaluate both expressions at π/2. and you have the desired proof.
 
  • Like
Likes anuttarasammyak
  • #12
Svein said:
As I have noted in an Insight, just create the Fourier serien from the function \pi ^{2}\cdot x - x^{3}. This ends up in 12\cdot \sum_{n=1}^{\infty}\frac{\sin(n(\pi - x))}{n^{3}}. Evaluate both expressions at π/2. and you have the desired proof.
You mentioned your Insight here. Reading your Insight is where I got the idea to rewrite an alternating sum over odd integers using ##\sin \dfrac{n \pi}{2}##, an idea which has opened up fruitful avenues.

What's intriguing about @Euge's question is its versatility; it invites a range of perspectives and solution methods. Maybe there are still more ways of proving it?
 
Last edited:
  • #13
Svein said:
As I have noted in an Insight, just create the Fourier serien from the function \pi ^{2}\cdot x - x^{3}. This ends up in 12\cdot \sum_{n=1}^{\infty}\frac{\sin(n(\pi - x))}{n^{3}}. Evaluate both expressions at π/2. and you have the desired proof.
Excellent. Let me follow you.
T(x):=\sum_{n=1}^{\infty}\frac{\sin(n(\pi-x))}{n^3} for ##-\pi < x < \pi##. Regarding this as Fourier series, ##n^{3}## in denominator shows that T(x) is a tertial function of x thinking of integration by parts for the calculation of Fourier components. We can write T(x) with constant a as
T(x)=ax(x-\pi)(x+\pi) because T(0)=T(\pi)=T(-\pi)=0 To determine a, let us compare T'(0) of the both forms
1-2^{-2}+3^{-2}-4^{-2}+...=\frac{1}{2}\zeta(2)=-\pi^2 a
a=-\frac{1}{12}
Thus the value we want is
T(\frac{\pi}{2})=-\frac{1}{12}(\frac{\pi}{2})(-\frac{\pi}{2})\frac{3\pi}{2}=\frac{\pi^3}{32}

With wolfram.

1715391997848.png



It shows \frac{\pi^3}{ 32}=0.9674...
1715397082408.png

Similary say
T_+ (x):=\sum_{n=1}^{\infty}\frac{\sin(nx)}{n^3} for ##-\pi < x < \pi##.
T_+ (x)=-\frac{1}{6}x(x-\pi)(x+\pi)=2T(x) But from the summation
T_+ (\frac{\pi}{2})=T (\frac{\pi}{2})=1-3^{-3}+5^{-3}-... which is confirmed as below shown.
1715437458924.png

1715467272867.png


Where I went wrong ? We may have to choose the basic area for repetition where Y of sin Y for n=1 does not change sign, e.g. ##0 < x < 2\pi## for
T_+ (x)=\sum_{n=1}^{\infty}\frac{\sin(nx)}{n^3}
 
Last edited:
  • #15
As those know who learned precalculus from Euler, (Intro. to Analysis of the Infinite, paragraphs ##174-175##, one can deduce from his complex series for the trig functions, that in general,
$$1/m^3 - 1/(2n-m)^3 + 1/(2n+m)^3 - 1/(4n-m)^3 + 1/(4n+m)^3 - ....
= (k^2+1)π^3/(8n^3k^3),$$ where ##k = \tan(mπ/2n)##.

In particular, when ##m=1, n=2##, then ##k = \tan(π/4) = 1##, so
$$1 - 1/3^3 + 1/5^3 -1/7^3 + 1/9^3 -\cdots = π^3/32.$$

cf. p.146:
 
Last edited by a moderator:
  • Informative
  • Like
Likes neilparker62, dextercioby and julian
  • #16
anuttarasammyak said:
Excellent. Let me follow you.
T(x):=\sum_{n=1}^{\infty}\frac{\sin(n(\pi-x))}{n^3} for ##-\pi < x < \pi##. Regarding this as Fourier series, ##n^{3}## in denominator shows that T(x) is a tertial function of x thinking of integration by parts for the calculation of Fourier components. We can write T(x) with constant a as
T(x)=ax(x-\pi)(x+\pi) because T(0)=T(\pi)=T(-\pi)=0 To determine a, let us compare T'(0) of the both forms
1-2^{-2}+3^{-2}-4^{-2}+...=\frac{1}{2}\zeta(2)=-\pi^2 a
a=-\frac{1}{12}
Thus the value we want is
T(\frac{\pi}{2})=-\frac{1}{12}(\frac{\pi}{2})(-\frac{\pi}{2})\frac{3\pi}{2}=\frac{\pi^3}{32}

With wolfram.

View attachment 344990


It shows \frac{\pi^3}{ 32}=0.9674...View attachment 344995
Similary say
T_+ (x):=\sum_{n=1}^{\infty}\frac{\sin(nx)}{n^3} for ##-\pi < x < \pi##.
T_+ (x)=-\frac{1}{6}x(x-\pi)(x+\pi)=2T(x) But from the summation
T_+ (\frac{\pi}{2})=T (\frac{\pi}{2})=1-3^{-3}+5^{-3}-... which is confirmed as below shown.
View attachment 345002
View attachment 345031

Where I went wrong ? We may have to choose the basic area for repetition where Y of sin Y for n=1 does not change sign, e.g. ##0 < x < 2\pi## for
T_+ (x)=\sum_{n=1}^{\infty}\frac{\sin(nx)}{n^3}
The correct formula is

\begin{align*}
\sum_{n=1}^{\infty}\frac{\sin(nx)}{n^3} = - \frac{1}{12} x (x-\pi)(2\pi-x)
\end{align*}

and it is on the interval ##0 < x < 2 \pi##.

We demonstrate that for the interval ##0 < x < 2 \pi## that the Fourier series of ##\frac{(x-\pi)^3 - \pi^2 (x-\pi)}{12}## is ##\sum_{n=1}^\infty \frac{\sin (nx)}{n^3}##. For the interval ##0 < x < 2 \pi##,

\begin{align*}
s(x) = \sum_{n=1}^\infty b_n \sin (nx) \qquad \text{where} \qquad b_n = \frac{1}{\pi} \int_0^{2 \pi} s (x) \sin (nx)
\end{align*}

So, in our case

\begin{align*}
b_n = \frac{1}{\pi} \int_0^{2 \pi} \frac{(x-\pi)^3 - \pi^2 (x-\pi)}{12} \sin (nx) dx = (-1)^n \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{y^3 - \pi^2 y}{12} \sin (ny) dy
\end{align*}

where we have put ##y = x-\pi##. So

\begin{align*}
b_n & = (-1)^n \frac{1}{12 \pi} \int_{-\pi}^{\pi} (y^3 - \pi^2 y) \sin (ny) dy
\nonumber \\
& = (-1)^n \frac{1}{6 \pi} \left. \left( \left[ \frac{d^3}{dk^3} + \pi^2 \frac{d}{dk} \right] \int_0^\pi \cos (ky) dy \right) \right|_{k=n}
\nonumber \\
& = (-1)^n \frac{1}{6 \pi} \left. \left( \left[ \frac{d^3}{dk^3} + \pi^2 \frac{d}{dk} \right] \frac{1}{k} \sin (k \pi) \right) \right|_{k=n}
\nonumber \\
& = \frac{1}{n^3}
\end{align*}
 
Last edited:
  • Like
Likes anuttarasammyak
  • #17
Hi @anuttarasammyak, I'm looking at your solution method from post #8 in more detail. For simplicity reasons I consider ##e^{inx}## instead of ##e^{\frac{\pi n x i}{2}}## and put ##x=\frac{\pi}{2}## at the end.

At a certain step you basically proceed to integrate this:

\begin{align*}
\ln (1- e^{ix}) = - \sum_{n=1}^\infty \frac{e^{inx}}{n}
\end{align*}

twice with respect to ##x## and then take the imaginary part. You can split ##\ln (1- e^{ix})## into its real and imaginary parts:

\begin{align*}
\ln (1- e^{ix}) & = \ln |1- e^{inx}| + i \theta
\nonumber \\
& = \ln \left| 2 \sin \frac{x}{2} \right| + i \theta
\end{align*}

where

\begin{align*}
\tan \theta = \frac{\sin x}{\cos x - 1} = - \frac{\cos (x/2)}{\sin (x/2)} = - \tan \left( \frac{\pi}{2} - \frac{x}{2} \right)
\end{align*}

So

\begin{align*}
\sum_{n=1}^\infty \frac{e^{inx}}{n} & = - \ln \left| 2 \sin \frac{x}{2} \right| + i \left( \frac{\pi}{2} - \frac{x}{2} \right)
\end{align*}

You didn't split ##\ln (1- e^{ix})## into its real and imaginary part, and proceeded to integrate. This made things overly complicated, we only need the imaginary part:

\begin{align*}
\sum_{n=1}^\infty \frac{\sin (nx)}{n} = \frac{\pi}{2} - \frac{x}{2} \qquad (*)
\end{align*}

Integrating this gives

\begin{align*}
\sum_{n=1}^\infty \frac{\cos (nx)}{n^2} - \sum_{n=1}^\infty \frac{1}{n^2} & = - \int_0^x \left( \frac{\pi}{2} - \frac{x}{2} \right) dx
\nonumber \\
& = - \frac{\pi}{2} x + \frac{x^2}{4}
\end{align*}

Rearranging, and integrating again

\begin{align*}
\sum_{n=1}^\infty \frac{\sin (nx)}{n^3} & = - \frac{\pi}{4} x^2 + \frac{x^3}{12} + \sum_{n=1}^\infty \frac{1}{n^2} x
\end{align*}

Putting ##x = \frac{\pi}{2}## we get:

\begin{align*}
\sum_{n=1}^\infty \frac{\sin (\frac{n \pi}{2})}{n^3} & = - \pi^3 \frac{5}{3 \cdot 32} + \frac{\pi}{2} \sum_{n=1}^\infty \frac{1}{n^2} \qquad (**)
\end{align*}

We can find the sum ##\sum_{n=1}^\infty \frac{1}{n^2}## by integrating ##(*)## from ##0## to ##\pi##. Integrating the LHS of ##(*)## results in:

\begin{align*}
- \sum_{n=1}^\infty \frac{\cos (n\pi)}{n^2} + \sum_{n=1}^\infty \frac{1}{n^2} & = - \sum_{n=1}^\infty \frac{(-1)^n}{n^2} + \sum_{n=1}^\infty \frac{1}{n^2}
\nonumber \\
& = 2 (\sum_{n=0}^\infty \frac{1}{(2n-1)^2})
\nonumber \\
& = 2 (\sum_{n=0}^\infty \frac{1}{n^2} - \sum_{n=0}^\infty \frac{1}{(2n)^2})
\nonumber \\
& = \frac{3}{2} \sum_{n=0}^\infty \frac{1}{n^2}
\end{align*}

Integrating the RHS of ##(*)## results in

\begin{align*}
\int_0^\pi (\frac{\pi}{2} - \frac{x}{2}) dx = \frac{\pi^2}{4} .
\end{align*}

Equating the last two results, we obtain:

\begin{align*}
\sum_{n=0}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}
\end{align*}

Substituting this into ##(**)##, finally we get:

\begin{align*}
\sum_{n=1}^\infty \frac{\sin (\frac{n \pi}{2})}{n^3} & = - \pi^3 \frac{5}{3 \cdot 32} + \frac{\pi^3}{12} = \frac{\pi^3}{32} .
\end{align*}


Applying the geometric sum formula and then Abel's theorem

In post #8 you wrote ##\sum_{n=1}^\infty e^{\frac{\pi nxi}{2}} = \frac{1}{e^{-\frac{\pi xi}{2}} - 1}##. This is not legitimate as this

\begin{align*}
(1 - e^{\frac{\pi xi}{2}}) \sum_{n=0}^N e^{\frac{\pi nxi}{2}} = 1 - e^{\frac{\pi (N+1)xi}{2}} = 1 - \cos (\frac{\pi (N+1)x}{2}) - i \sin (\frac{\pi (N+1)x}{2})
\end{align*}

is ill-defined in the limit ##N \rightarrow \infty##.

If you consider the sum ##\sum_{n=1}^\infty r^n e^{inx}## where ##|r| < 1##, then the limit ##\lim_{N \rightarrow \infty} (1 - r e^{ix}) \sum_{n=1}^N r^n e^{inx}## is well defined. You can then write

\begin{align*}
\sum_{n=1}^\infty r^n e^{inx} = \frac{re^{ix}}{1 - r e^{ix}}
\end{align*}

By integrating the uniformly convergent geometric power series term by term (and multiply by ##i##) you get:

\begin{align*}
\sum_{n=1}^\infty r^n \frac{e^{inx}}{n} & = i \int_0^x \frac{re^{ix}}{1 - r e^{ix}} dx
\nonumber \\
& = - \ln |1 - r e^{ix}| + i \tan^{-1} \frac{r \sin x}{r \cos x-1}
\end{align*}

If you prove that the series ##\sum_{n=1}^\infty \frac{e^{inx}}{n}## converges you would be able to apply Abel's theorem to conclude:

\begin{align*}
\lim_{r \rightarrow 1^-} \sum_{n=1}^\infty r^n \frac{e^{inx}}{n} = - \ln |1 - e^{ix}| + i \tan^{-1} \frac{\sin x}{\cos x-1} .
\end{align*}

You can prove ##\ln (1-z)## converges everywhere on the unit circle except at ##z=1##. Fix ##z## in the unit circle, i.e. ##|z|=1##. We apply Dirichlet's test:

If ##\{ a_n \}## are real numbers and ##\{ b_n \}## complex numbers such that: (i) ##a_1 \geq a_2 \geq \cdots## (ii) ##\lim_{n \rightarrow \infty} a_n = 0## (iii) There exists ##M## such that ##\left| \sum_{n=1}^N b_n \right| \leq M## for all ##N \in \mathbb{N}##; then ##\sum_{n=1}^\infty a_n b_n## converges.

Choose ##a_n = 1/n## and ##b_n = z^n##, then the first two conditions obviously hold. For the third condition:

\begin{align*}
\left| \sum_{n=1}^N z^n \right| = \left| \dfrac{z-z^{N+1}}{1-z} \right| \leq \frac{2}{| 1-z |}
\end{align*}

for all ##N \in \mathbb{N}##. This shows the series converges for ##|z|=1## where ##z \not= 1##.
 
Last edited:
  • Like
Likes Greg Bernhardt and anuttarasammyak
  • #18
mathwonk said:
As those know who learned precalculus from Euler, (Intro. to Analysis of the Infinite, paragraphs ##174-175##, one can deduce from his complex series for the trig functions, that in general,
$$1/m^3 - 1/(2n-m)^3 + 1/(2n+m)^3 - 1/(4n-m)^3 + 1/(4n+m)^3 - ....
= (k^2+1)π^3/(8n^3k^3),$$ where ##k = \tan(mπ/2n)##.

In particular, when ##m=1, n=2##, then ##k = \tan(π/4) = 1##, so
$$1 - 1/3^3 + 1/5^3 -1/7^3 + 1/9^3 -\cdots = π^3/32.$$

cf. p.146:

That's a revelation! How many of us "learned precalculus from (the legendary) Euler" ??! Have downloaded the book - thanks for the reference.
 

Similar threads

Replies
1
Views
3K
Replies
1
Views
2K
Replies
5
Views
2K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
3
Views
2K