Summation #2 Prove: $\sum_{k=1}^n (2^k\sin^2\frac{x}{2^k})^2$

  • Context: MHB 
  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Challenge Summation
Click For Summary
SUMMARY

The discussion centers on proving the equation $$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2=\left(2^n\sin\frac{x}{2^n}\right)^2-\sin^2x$$. Participants provided insights and solutions, confirming the validity of the equation through mathematical reasoning. The proof involves manipulating the sine function and applying properties of summation to arrive at the conclusion.

PREREQUISITES
  • Understanding of trigonometric identities, specifically sine functions.
  • Familiarity with summation notation and series.
  • Knowledge of limits and convergence in mathematical analysis.
  • Basic algebraic manipulation skills for handling equations.
NEXT STEPS
  • Study the properties of sine functions in trigonometry.
  • Learn about series convergence and divergence in mathematical analysis.
  • Explore advanced summation techniques, including telescoping series.
  • Investigate the applications of trigonometric identities in proofs.
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced trigonometric proofs and series summation techniques.

Saitama
Messages
4,244
Reaction score
93
Prove the following:
$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2=\left(2^n\sin\frac{x}{2^n}\right)^2-\sin^2x$$
 
Physics news on Phys.org
Proof by means of the induction principle:

\[\sum_{k=1}^{n}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2=\left ( 2^n sin\left ( \frac{x}{2^n} \right )\right )^2-sin^2(x)\]

The sum holds for $n=1$:
\[\left ( 2sin\left ( \frac{x}{2} \right ) \right )^2-sin^2(x)= 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )cos^2\left ( \frac{x}{2} \right )\\\\ = 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )\left ( 1-sin^2\left ( \frac{x}{2} \right ) \right )=\left ( 2sin^2\left ( \frac{x}{2} \right ) \right )^2\]

Assume the equation holds for some $n>1$. Then it also holds for $n+1$, because:

\[\sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 =\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2-sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\;\;\;\; (1).\]

Rewriting the first term on the RHS:

\[\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2 =2^{2n}sin^2\left ( 2\cdot \frac{x}{2^{n+1}} \right )= 2^{2n+2}sin^2\left ( \frac{x}{2^{n+1}} \right )cos^2\left ( \frac{x}{2^{n+1}} \right )\\\\ =\left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) \;\;\; (2).\]

Inserting $(2)$ into $(1)$:

\[ \sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 = \left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) -sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\\\\=\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2-\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2 \\\\ =\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)\]
I´m sure, there is a more elegant way to prove the identity …
 
Pranav said:
Prove the following:
$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2=\left(2^n\sin\frac{x}{2^n}\right)^2-\sin^2x$$

My solution:

Notice that

$\begin{align*}\left(2^k\sin^2\frac{x}{2^k}\right)^2&=2^{2k}\sin^2\dfrac{x}{2^k}\left(\sin^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}\left(1-\cos^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k}\sin^2\dfrac{x}{2^k}\cos^2\dfrac{x}{2^k}\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right)\end{align*}$

Hence,

$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2$$$$=\sum_{k=1}^n \left(2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right) \right)$$$$=\left(4\sin^2\dfrac{x}{2}-\sin^2x\right)+\left(16\sin^2\dfrac{x}{4}-4\sin^2\dfrac{x}{2}\right)+\left(64\sin^2\dfrac{x}{8}-16\sin^2\dfrac{x}{4}\right)+\cdots$$$$+\left(2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}-2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}\right)$$$$=\left(\cancel{4\sin^2\dfrac{x}{2}}-\sin^2x\right)+\left(\cancel{16\sin^2\dfrac{x}{4}}-\cancel{4\sin^2\dfrac{x}{2}}\right)+\left(\cancel{64\sin^2\dfrac{x}{8}}-\cancel{16\sin^2\dfrac{x}{4}}\right)+\cdots$$$$+\left(\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}-\cancel{2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}\right)$$$$=\left(2^n\sin\dfrac{x}{2^n}\right)^2-\sin^2x\text{(QED)}$$
 
anemone said:
My solution:

Notice that

$\begin{align*}\left(2^k\sin^2\frac{x}{2^k}\right)^2&=2^{2k}\sin^2\dfrac{x}{2^k}\left(\sin^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}\left(1-\cos^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k}\sin^2\dfrac{x}{2^k}\cos^2\dfrac{x}{2^k}\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right)\end{align*}$

Hence,

$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2$$$$=\sum_{k=1}^n \left(2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right) \right)$$$$=\left(4\sin^2\dfrac{x}{2}-\sin^2x\right)+\left(16\sin^2\dfrac{x}{4}-4\sin^2\dfrac{x}{2}\right)+\left(64\sin^2\dfrac{x}{8}-16\sin^2\dfrac{x}{4}\right)+\cdots$$$$+\left(2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}-2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}\right)$$$$=\left(\cancel{4\sin^2\dfrac{x}{2}}-\sin^2x\right)+\left(\cancel{16\sin^2\dfrac{x}{4}}-\cancel{4\sin^2\dfrac{x}{2}}\right)+\left(\cancel{64\sin^2\dfrac{x}{8}}-\cancel{16\sin^2\dfrac{x}{4}}\right)+\cdots$$$$+\left(\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}-\cancel{2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}\right)$$$$=\left(2^n\sin\dfrac{x}{2^n}\right)^2-\sin^2x\text{(QED)}$$

lfdahl said:
Proof by means of the induction principle:

\[\sum_{k=1}^{n}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2=\left ( 2^n sin\left ( \frac{x}{2^n} \right )\right )^2-sin^2(x)\]

The sum holds for $n=1$:
\[\left ( 2sin\left ( \frac{x}{2} \right ) \right )^2-sin^2(x)= 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )cos^2\left ( \frac{x}{2} \right )\\\\ = 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )\left ( 1-sin^2\left ( \frac{x}{2} \right ) \right )=\left ( 2sin^2\left ( \frac{x}{2} \right ) \right )^2\]

Assume the equation holds for some $n>1$. Then it also holds for $n+1$, because:

\[\sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 =\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2-sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\;\;\;\; (1).\]

Rewriting the first term on the RHS:

\[\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2 =2^{2n}sin^2\left ( 2\cdot \frac{x}{2^{n+1}} \right )= 2^{2n+2}sin^2\left ( \frac{x}{2^{n+1}} \right )cos^2\left ( \frac{x}{2^{n+1}} \right )\\\\ =\left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) \;\;\; (2).\]

Inserting $(2)$ into $(1)$:

\[ \sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 = \left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) -sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\\\\=\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2-\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2 \\\\ =\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)\]
I´m sure, there is a more elegant way to prove the identity …

Thank you both for your participation and nicely done anemone. :)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K