MHB Summation #2 Prove: $\sum_{k=1}^n (2^k\sin^2\frac{x}{2^k})^2$

AI Thread Summary
The discussion focuses on proving the identity involving the summation of squared terms of the form \( \sum_{k=1}^n (2^k\sin^2\frac{x}{2^k})^2 \). The proposed equation to prove is \( \sum_{k=1}^n (2^k\sin^2\frac{x}{2^k})^2 = (2^n\sin\frac{x}{2^n})^2 - \sin^2x \). Participants share their approaches and solutions to the proof, with one user expressing appreciation for another's contribution. The thread emphasizes collaborative problem-solving in mathematical proofs. The discussion concludes with a positive acknowledgment of the participants' efforts.
Saitama
Messages
4,244
Reaction score
93
Prove the following:
$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2=\left(2^n\sin\frac{x}{2^n}\right)^2-\sin^2x$$
 
Mathematics news on Phys.org
Proof by means of the induction principle:

\[\sum_{k=1}^{n}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2=\left ( 2^n sin\left ( \frac{x}{2^n} \right )\right )^2-sin^2(x)\]

The sum holds for $n=1$:
\[\left ( 2sin\left ( \frac{x}{2} \right ) \right )^2-sin^2(x)= 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )cos^2\left ( \frac{x}{2} \right )\\\\ = 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )\left ( 1-sin^2\left ( \frac{x}{2} \right ) \right )=\left ( 2sin^2\left ( \frac{x}{2} \right ) \right )^2\]

Assume the equation holds for some $n>1$. Then it also holds for $n+1$, because:

\[\sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 =\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2-sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\;\;\;\; (1).\]

Rewriting the first term on the RHS:

\[\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2 =2^{2n}sin^2\left ( 2\cdot \frac{x}{2^{n+1}} \right )= 2^{2n+2}sin^2\left ( \frac{x}{2^{n+1}} \right )cos^2\left ( \frac{x}{2^{n+1}} \right )\\\\ =\left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) \;\;\; (2).\]

Inserting $(2)$ into $(1)$:

\[ \sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 = \left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) -sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\\\\=\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2-\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2 \\\\ =\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)\]
I´m sure, there is a more elegant way to prove the identity …
 
Pranav said:
Prove the following:
$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2=\left(2^n\sin\frac{x}{2^n}\right)^2-\sin^2x$$

My solution:

Notice that

$\begin{align*}\left(2^k\sin^2\frac{x}{2^k}\right)^2&=2^{2k}\sin^2\dfrac{x}{2^k}\left(\sin^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}\left(1-\cos^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k}\sin^2\dfrac{x}{2^k}\cos^2\dfrac{x}{2^k}\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right)\end{align*}$

Hence,

$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2$$$$=\sum_{k=1}^n \left(2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right) \right)$$$$=\left(4\sin^2\dfrac{x}{2}-\sin^2x\right)+\left(16\sin^2\dfrac{x}{4}-4\sin^2\dfrac{x}{2}\right)+\left(64\sin^2\dfrac{x}{8}-16\sin^2\dfrac{x}{4}\right)+\cdots$$$$+\left(2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}-2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}\right)$$$$=\left(\cancel{4\sin^2\dfrac{x}{2}}-\sin^2x\right)+\left(\cancel{16\sin^2\dfrac{x}{4}}-\cancel{4\sin^2\dfrac{x}{2}}\right)+\left(\cancel{64\sin^2\dfrac{x}{8}}-\cancel{16\sin^2\dfrac{x}{4}}\right)+\cdots$$$$+\left(\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}-\cancel{2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}\right)$$$$=\left(2^n\sin\dfrac{x}{2^n}\right)^2-\sin^2x\text{(QED)}$$
 
anemone said:
My solution:

Notice that

$\begin{align*}\left(2^k\sin^2\frac{x}{2^k}\right)^2&=2^{2k}\sin^2\dfrac{x}{2^k}\left(\sin^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}\left(1-\cos^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k}\sin^2\dfrac{x}{2^k}\cos^2\dfrac{x}{2^k}\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right)\end{align*}$

Hence,

$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2$$$$=\sum_{k=1}^n \left(2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right) \right)$$$$=\left(4\sin^2\dfrac{x}{2}-\sin^2x\right)+\left(16\sin^2\dfrac{x}{4}-4\sin^2\dfrac{x}{2}\right)+\left(64\sin^2\dfrac{x}{8}-16\sin^2\dfrac{x}{4}\right)+\cdots$$$$+\left(2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}-2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}\right)$$$$=\left(\cancel{4\sin^2\dfrac{x}{2}}-\sin^2x\right)+\left(\cancel{16\sin^2\dfrac{x}{4}}-\cancel{4\sin^2\dfrac{x}{2}}\right)+\left(\cancel{64\sin^2\dfrac{x}{8}}-\cancel{16\sin^2\dfrac{x}{4}}\right)+\cdots$$$$+\left(\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}-\cancel{2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}\right)$$$$=\left(2^n\sin\dfrac{x}{2^n}\right)^2-\sin^2x\text{(QED)}$$

lfdahl said:
Proof by means of the induction principle:

\[\sum_{k=1}^{n}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2=\left ( 2^n sin\left ( \frac{x}{2^n} \right )\right )^2-sin^2(x)\]

The sum holds for $n=1$:
\[\left ( 2sin\left ( \frac{x}{2} \right ) \right )^2-sin^2(x)= 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )cos^2\left ( \frac{x}{2} \right )\\\\ = 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )\left ( 1-sin^2\left ( \frac{x}{2} \right ) \right )=\left ( 2sin^2\left ( \frac{x}{2} \right ) \right )^2\]

Assume the equation holds for some $n>1$. Then it also holds for $n+1$, because:

\[\sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 =\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2-sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\;\;\;\; (1).\]

Rewriting the first term on the RHS:

\[\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2 =2^{2n}sin^2\left ( 2\cdot \frac{x}{2^{n+1}} \right )= 2^{2n+2}sin^2\left ( \frac{x}{2^{n+1}} \right )cos^2\left ( \frac{x}{2^{n+1}} \right )\\\\ =\left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) \;\;\; (2).\]

Inserting $(2)$ into $(1)$:

\[ \sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 = \left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) -sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\\\\=\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2-\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2 \\\\ =\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)\]
I´m sure, there is a more elegant way to prove the identity …

Thank you both for your participation and nicely done anemone. :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top