MHB Summation #2 Prove: $\sum_{k=1}^n (2^k\sin^2\frac{x}{2^k})^2$

AI Thread Summary
The discussion focuses on proving the identity involving the summation of squared terms of the form \( \sum_{k=1}^n (2^k\sin^2\frac{x}{2^k})^2 \). The proposed equation to prove is \( \sum_{k=1}^n (2^k\sin^2\frac{x}{2^k})^2 = (2^n\sin\frac{x}{2^n})^2 - \sin^2x \). Participants share their approaches and solutions to the proof, with one user expressing appreciation for another's contribution. The thread emphasizes collaborative problem-solving in mathematical proofs. The discussion concludes with a positive acknowledgment of the participants' efforts.
Saitama
Messages
4,244
Reaction score
93
Prove the following:
$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2=\left(2^n\sin\frac{x}{2^n}\right)^2-\sin^2x$$
 
Mathematics news on Phys.org
Proof by means of the induction principle:

\[\sum_{k=1}^{n}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2=\left ( 2^n sin\left ( \frac{x}{2^n} \right )\right )^2-sin^2(x)\]

The sum holds for $n=1$:
\[\left ( 2sin\left ( \frac{x}{2} \right ) \right )^2-sin^2(x)= 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )cos^2\left ( \frac{x}{2} \right )\\\\ = 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )\left ( 1-sin^2\left ( \frac{x}{2} \right ) \right )=\left ( 2sin^2\left ( \frac{x}{2} \right ) \right )^2\]

Assume the equation holds for some $n>1$. Then it also holds for $n+1$, because:

\[\sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 =\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2-sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\;\;\;\; (1).\]

Rewriting the first term on the RHS:

\[\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2 =2^{2n}sin^2\left ( 2\cdot \frac{x}{2^{n+1}} \right )= 2^{2n+2}sin^2\left ( \frac{x}{2^{n+1}} \right )cos^2\left ( \frac{x}{2^{n+1}} \right )\\\\ =\left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) \;\;\; (2).\]

Inserting $(2)$ into $(1)$:

\[ \sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 = \left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) -sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\\\\=\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2-\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2 \\\\ =\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)\]
I´m sure, there is a more elegant way to prove the identity …
 
Pranav said:
Prove the following:
$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2=\left(2^n\sin\frac{x}{2^n}\right)^2-\sin^2x$$

My solution:

Notice that

$\begin{align*}\left(2^k\sin^2\frac{x}{2^k}\right)^2&=2^{2k}\sin^2\dfrac{x}{2^k}\left(\sin^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}\left(1-\cos^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k}\sin^2\dfrac{x}{2^k}\cos^2\dfrac{x}{2^k}\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right)\end{align*}$

Hence,

$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2$$$$=\sum_{k=1}^n \left(2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right) \right)$$$$=\left(4\sin^2\dfrac{x}{2}-\sin^2x\right)+\left(16\sin^2\dfrac{x}{4}-4\sin^2\dfrac{x}{2}\right)+\left(64\sin^2\dfrac{x}{8}-16\sin^2\dfrac{x}{4}\right)+\cdots$$$$+\left(2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}-2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}\right)$$$$=\left(\cancel{4\sin^2\dfrac{x}{2}}-\sin^2x\right)+\left(\cancel{16\sin^2\dfrac{x}{4}}-\cancel{4\sin^2\dfrac{x}{2}}\right)+\left(\cancel{64\sin^2\dfrac{x}{8}}-\cancel{16\sin^2\dfrac{x}{4}}\right)+\cdots$$$$+\left(\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}-\cancel{2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}\right)$$$$=\left(2^n\sin\dfrac{x}{2^n}\right)^2-\sin^2x\text{(QED)}$$
 
anemone said:
My solution:

Notice that

$\begin{align*}\left(2^k\sin^2\frac{x}{2^k}\right)^2&=2^{2k}\sin^2\dfrac{x}{2^k}\left(\sin^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}\left(1-\cos^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k}\sin^2\dfrac{x}{2^k}\cos^2\dfrac{x}{2^k}\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right)\end{align*}$

Hence,

$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2$$$$=\sum_{k=1}^n \left(2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right) \right)$$$$=\left(4\sin^2\dfrac{x}{2}-\sin^2x\right)+\left(16\sin^2\dfrac{x}{4}-4\sin^2\dfrac{x}{2}\right)+\left(64\sin^2\dfrac{x}{8}-16\sin^2\dfrac{x}{4}\right)+\cdots$$$$+\left(2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}-2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}\right)$$$$=\left(\cancel{4\sin^2\dfrac{x}{2}}-\sin^2x\right)+\left(\cancel{16\sin^2\dfrac{x}{4}}-\cancel{4\sin^2\dfrac{x}{2}}\right)+\left(\cancel{64\sin^2\dfrac{x}{8}}-\cancel{16\sin^2\dfrac{x}{4}}\right)+\cdots$$$$+\left(\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}-\cancel{2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}\right)$$$$=\left(2^n\sin\dfrac{x}{2^n}\right)^2-\sin^2x\text{(QED)}$$

lfdahl said:
Proof by means of the induction principle:

\[\sum_{k=1}^{n}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2=\left ( 2^n sin\left ( \frac{x}{2^n} \right )\right )^2-sin^2(x)\]

The sum holds for $n=1$:
\[\left ( 2sin\left ( \frac{x}{2} \right ) \right )^2-sin^2(x)= 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )cos^2\left ( \frac{x}{2} \right )\\\\ = 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )\left ( 1-sin^2\left ( \frac{x}{2} \right ) \right )=\left ( 2sin^2\left ( \frac{x}{2} \right ) \right )^2\]

Assume the equation holds for some $n>1$. Then it also holds for $n+1$, because:

\[\sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 =\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2-sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\;\;\;\; (1).\]

Rewriting the first term on the RHS:

\[\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2 =2^{2n}sin^2\left ( 2\cdot \frac{x}{2^{n+1}} \right )= 2^{2n+2}sin^2\left ( \frac{x}{2^{n+1}} \right )cos^2\left ( \frac{x}{2^{n+1}} \right )\\\\ =\left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) \;\;\; (2).\]

Inserting $(2)$ into $(1)$:

\[ \sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 = \left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) -sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\\\\=\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2-\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2 \\\\ =\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)\]
I´m sure, there is a more elegant way to prove the identity …

Thank you both for your participation and nicely done anemone. :)
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top