MHB Summation #2 Prove: $\sum_{k=1}^n (2^k\sin^2\frac{x}{2^k})^2$

Click For Summary
The discussion focuses on proving the identity involving the summation of squared terms of the form \( \sum_{k=1}^n (2^k\sin^2\frac{x}{2^k})^2 \). The proposed equation to prove is \( \sum_{k=1}^n (2^k\sin^2\frac{x}{2^k})^2 = (2^n\sin\frac{x}{2^n})^2 - \sin^2x \). Participants share their approaches and solutions to the proof, with one user expressing appreciation for another's contribution. The thread emphasizes collaborative problem-solving in mathematical proofs. The discussion concludes with a positive acknowledgment of the participants' efforts.
Saitama
Messages
4,244
Reaction score
93
Prove the following:
$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2=\left(2^n\sin\frac{x}{2^n}\right)^2-\sin^2x$$
 
Mathematics news on Phys.org
Proof by means of the induction principle:

\[\sum_{k=1}^{n}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2=\left ( 2^n sin\left ( \frac{x}{2^n} \right )\right )^2-sin^2(x)\]

The sum holds for $n=1$:
\[\left ( 2sin\left ( \frac{x}{2} \right ) \right )^2-sin^2(x)= 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )cos^2\left ( \frac{x}{2} \right )\\\\ = 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )\left ( 1-sin^2\left ( \frac{x}{2} \right ) \right )=\left ( 2sin^2\left ( \frac{x}{2} \right ) \right )^2\]

Assume the equation holds for some $n>1$. Then it also holds for $n+1$, because:

\[\sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 =\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2-sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\;\;\;\; (1).\]

Rewriting the first term on the RHS:

\[\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2 =2^{2n}sin^2\left ( 2\cdot \frac{x}{2^{n+1}} \right )= 2^{2n+2}sin^2\left ( \frac{x}{2^{n+1}} \right )cos^2\left ( \frac{x}{2^{n+1}} \right )\\\\ =\left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) \;\;\; (2).\]

Inserting $(2)$ into $(1)$:

\[ \sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 = \left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) -sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\\\\=\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2-\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2 \\\\ =\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)\]
I´m sure, there is a more elegant way to prove the identity …
 
Pranav said:
Prove the following:
$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2=\left(2^n\sin\frac{x}{2^n}\right)^2-\sin^2x$$

My solution:

Notice that

$\begin{align*}\left(2^k\sin^2\frac{x}{2^k}\right)^2&=2^{2k}\sin^2\dfrac{x}{2^k}\left(\sin^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}\left(1-\cos^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k}\sin^2\dfrac{x}{2^k}\cos^2\dfrac{x}{2^k}\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right)\end{align*}$

Hence,

$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2$$$$=\sum_{k=1}^n \left(2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right) \right)$$$$=\left(4\sin^2\dfrac{x}{2}-\sin^2x\right)+\left(16\sin^2\dfrac{x}{4}-4\sin^2\dfrac{x}{2}\right)+\left(64\sin^2\dfrac{x}{8}-16\sin^2\dfrac{x}{4}\right)+\cdots$$$$+\left(2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}-2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}\right)$$$$=\left(\cancel{4\sin^2\dfrac{x}{2}}-\sin^2x\right)+\left(\cancel{16\sin^2\dfrac{x}{4}}-\cancel{4\sin^2\dfrac{x}{2}}\right)+\left(\cancel{64\sin^2\dfrac{x}{8}}-\cancel{16\sin^2\dfrac{x}{4}}\right)+\cdots$$$$+\left(\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}-\cancel{2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}\right)$$$$=\left(2^n\sin\dfrac{x}{2^n}\right)^2-\sin^2x\text{(QED)}$$
 
anemone said:
My solution:

Notice that

$\begin{align*}\left(2^k\sin^2\frac{x}{2^k}\right)^2&=2^{2k}\sin^2\dfrac{x}{2^k}\left(\sin^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}\left(1-\cos^2\dfrac{x}{2^k}\right)\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k}\sin^2\dfrac{x}{2^k}\cos^2\dfrac{x}{2^k}\\&=2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right)\end{align*}$

Hence,

$$\sum_{k=1}^n \left(2^k\sin^2\frac{x}{2^k}\right)^2$$$$=\sum_{k=1}^n \left(2^{2k}\sin^2\dfrac{x}{2^k}-2^{2k-2}\left(\sin^2\dfrac{x}{2^{k-1}}\right) \right)$$$$=\left(4\sin^2\dfrac{x}{2}-\sin^2x\right)+\left(16\sin^2\dfrac{x}{4}-4\sin^2\dfrac{x}{2}\right)+\left(64\sin^2\dfrac{x}{8}-16\sin^2\dfrac{x}{4}\right)+\cdots$$$$+\left(2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}-2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}\right)$$$$=\left(\cancel{4\sin^2\dfrac{x}{2}}-\sin^2x\right)+\left(\cancel{16\sin^2\dfrac{x}{4}}-\cancel{4\sin^2\dfrac{x}{2}}\right)+\left(\cancel{64\sin^2\dfrac{x}{8}}-\cancel{16\sin^2\dfrac{x}{4}}\right)+\cdots$$$$+\left(\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}-\cancel{2^{2n-4}\sin^2\dfrac{x}{2^{n-3}}}\right)+\left(2^{2n}\sin^2\dfrac{x}{2^n}-\cancel{2^{2(n-1)}\sin^2\dfrac{x}{2^{n-1}}}\right)$$$$=\left(2^n\sin\dfrac{x}{2^n}\right)^2-\sin^2x\text{(QED)}$$

lfdahl said:
Proof by means of the induction principle:

\[\sum_{k=1}^{n}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2=\left ( 2^n sin\left ( \frac{x}{2^n} \right )\right )^2-sin^2(x)\]

The sum holds for $n=1$:
\[\left ( 2sin\left ( \frac{x}{2} \right ) \right )^2-sin^2(x)= 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )cos^2\left ( \frac{x}{2} \right )\\\\ = 4sin^2\left ( \frac{x}{2} \right )- 4sin^2\left ( \frac{x}{2} \right )\left ( 1-sin^2\left ( \frac{x}{2} \right ) \right )=\left ( 2sin^2\left ( \frac{x}{2} \right ) \right )^2\]

Assume the equation holds for some $n>1$. Then it also holds for $n+1$, because:

\[\sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 =\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2-sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\;\;\;\; (1).\]

Rewriting the first term on the RHS:

\[\left ( 2^nsin\left ( \frac{x}{2^n} \right ) \right )^2 =2^{2n}sin^2\left ( 2\cdot \frac{x}{2^{n+1}} \right )= 2^{2n+2}sin^2\left ( \frac{x}{2^{n+1}} \right )cos^2\left ( \frac{x}{2^{n+1}} \right )\\\\ =\left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) \;\;\; (2).\]

Inserting $(2)$ into $(1)$:

\[ \sum_{k=1}^{n+1}\left ( 2^ksin^2\left ( \frac{x}{2^k} \right ) \right )^2 = \left ( 2^{n+1} \right )^2sin^2\left ( \frac{x}{2^{n+1}} \right )\left ( 1-sin^2\left ( \frac{x}{2^{n+1}} \right ) \right ) -sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2\\\\=\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)+\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2-\left ( 2^{n+1}sin^2\left ( \frac{x}{2^{n+1}} \right ) \right )^2 \\\\ =\left ( 2^{n+1}sin\left ( \frac{x}{2^{n+1}} \right ) \right )^2 - sin^2(x)\]
I´m sure, there is a more elegant way to prove the identity …

Thank you both for your participation and nicely done anemone. :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K