POTW Support of a Finitely Generated Module

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    module Support
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
If ##R## is a commutative ring with ##1## and ##M## is an ##R##-module, the support of ##M## is defined as ##\operatorname{Supp}M = \{\mathfrak{p}\in \operatorname{Spec} R\mid M_\mathfrak{p} \neq 0\}##. Show that if ##\phi : R \to S## is a ring homomorphism and ##M## is a finitely generated ##R##-module, then $$\operatorname{Supp}(S\otimes_R M) = (\phi^*)^{-1}(\operatorname{Supp} M)$$ where ##\phi^* : \operatorname{Spec} S \to \operatorname{Spec} R## is defined by ##\phi^*(\mathfrak{q}) = \phi^{-1}(\mathfrak{q})##.
 
  • Like
Likes jbergman and Greg Bernhardt
Physics news on Phys.org
Euge said:
If ##R## is a commutative ring with ##1## and ##M## is an ##R##-module, the support of ##M## is defined as ##\operatorname{Supp}M = \{\mathfrak{p}\in \operatorname{Spec} R\mid M_\mathfrak{p} \neq 0\}##. Show that if ##\phi : R \to S## is a ring homomorphism and ##M## is a finitely generated ##R##-module, then $$\operatorname{Supp}(S\otimes_R M) = (\phi^*)^{-1}(\operatorname{Supp} M)$$ where ##\phi^* : \operatorname{Spec} S \to \operatorname{Spec} R## is defined by ##\phi^*(\mathfrak{q}) = \phi^{-1}(\mathfrak{q})##.
Just curious, what level and course would a student be exposed to this material? Thanks.
 
A course in abstract algebra that covers commutative rings and modules. The concepts in this POTW stem from commutative algebra. I would say the material here is at the level of the 3rd/4th year undergraduate.

If anyone would like hints or clarification on the problem, please feel free to ask me.
 
  • Like
Likes Greg Bernhardt and bob012345
Euge said:
A course in abstract algebra that covers commutative rings and modules. The concepts in this POTW stem from commutative algebra. I would say the material here is at the level of the 3rd/4th year undergraduate.

If anyone would like hints or clarification on the problem, please feel free to ask me.
Is ##\mathfrak{p}## a prime ideal? And what does ##M_{\mathfrak{p}}## mean? I studied some of this a while ago I am Aluffi and Jacobsen but have forgotten most of it.
 
jbergman said:
Is ##\mathfrak{p}## a prime ideal? And what does ##M_{\mathfrak{p}}## mean? I studied some of this a while ago I am Aluffi and Jacobsen but have forgotten most of it.

I think ##\mathfrak{p}## is a prime ideal.

Reminder:

Definition: Multiplicatively closed
Let ##R## be a ring. A subset ##S \subset R## is called multiplicatively closed if ##1 \in S##, and ##ab \in S## for all ##a,b \in S##.

Definition: Localisation of a ring
Let ##S## be a multiplicatively closed subset of a ring ##R##. Then
$$
(a,s) \sim (a',s') : \Leftrightarrow \text{ there is an element } u \in S \text{ such that } u (as' - a's) = 0
$$
is an equivalence relation on ##R \times S##. We denote the equivalence class of ##(a,s) \in R \times S## by ##\frac{a}{s}##. The set of all equivalence classes
$$
S^{-1} R := \left\{ \frac{a}{s} : a \in R , s \in S \right\}
$$
is then called the localization of ##R## at the multiplicatively closed set ##S##. It is a ring together with the addition and scalar multiplication
$$
\frac{a}{s} + \frac{a'}{s'} := \frac{as' +a's}{ss'} \quad \text{and} \quad \frac{a}{s} \cdot \frac{a'}{s'} = \frac{aa'}{ss'} .
$$

Complement of a ring with respect to a prime ideal is a multiplicatively closed set. Proof:
We must have ##1 \in R / \mathfrak{p}## because ##\mathfrak{p}## is proper being a prime ideal. For if ##1 \in \mathfrak{p}##, then would have ##r = r1 \in \mathfrak{p}## for all ##r \in R##, implying ##R = \mathfrak{p}##. Contradicting that ##\mathfrak{p}## is proper.
Suppose ##a,b \in R / \mathfrak{p}## but ##ab \not\in R / \mathfrak{p}##. This means that ##a,b \not\in \mathfrak{p}## but ##ab \in \mathfrak{p}##. This contradicts the definition of a prime ideal, and therefore we must have ##ab \in R / \mathfrak{p}##.

If ##S = R / \mathfrak{p}## is the complement of a prime ideal ##\mathfrak{p}##, then ##S^{-1} R## is denoted ##R_\mathfrak{p}##.Definition: Localisation of a module
Let ##S## be a multiplicatively closed subset of a ring ##R##, and let ##M## be an ##R-##module. Then
$$
(m,s) \sim (m',s') : \Leftrightarrow \text{ there is an element } u \in S \text{ such that } u (s'm - sm') = 0
$$
is an equivalence relation on ##M \times S##. We denote the equivalence class of ##(m,s) \in M \times S## by ##\frac{m}{s}##. The set of all equivalence classes
$$
S^{-1} M := \left\{ \frac{m}{s} : m \in M , s \in S \right\}
$$
is then called the localization of ##M## at ##S##. It is an ##S^{-1} R-##module together with the addition and scalar multiplication
$$
\frac{m}{s} + \frac{m'}{s'} := \frac{s'm +sm'}{ss'} \quad \text{and} \quad \frac{a}{s} \cdot \frac{m'}{s'} = \frac{am'}{ss'}
$$
for all ##a \in R##, ##m,m' \in M##, and ##s,s' \in S##.If ##S = R / \mathfrak{p}## is the complement of a prime ideal ##\mathfrak{p}##, then ##S^{-1} M## is denoted ##M_\mathfrak{p}##.
 
Last edited:
  • Like
Likes jbergman
jbergman said:
Is ##\mathfrak{p}## a prime ideal? And what does ##M_{\mathfrak{p}}## mean? I studied some of this a while ago I am Aluffi and Jacobsen but have forgotten most of it.
Yes, ##\mathfrak{p}## is a prime ideal. The set ##\operatorname{Spec}R## is the spectrum of ##R##, the set of all prime ideals of ##R##.
 
To solve this problem, consider showing that ##\mathfrak{q}\notin (\phi^*)^{-1}(\operatorname{Supp} M) \iff \mathfrak{q}\notin\operatorname{Supp}(S \otimes_R M)## using Nakayama's lemma.
 
I hope you enjoyed the challenge! Here is my solution.

If ##\mathfrak{q}\notin (\phi^*)^{-1}(\operatorname{Supp}M)##, the localization ##M_{\phi^{-1}(\mathfrak{q})} = 0##. Thus $$(S\otimes_R M)_\mathfrak{q} \simeq S_\mathfrak{q}\otimes_S(S\otimes_R M) \simeq S_\mathfrak{q}\otimes_R M\simeq (S_\mathfrak{q}\otimes_{R_{\phi^{-1}(\mathfrak{q})}} R_{\phi^{-1}(\mathfrak{q})}) \otimes_R M\simeq S_\mathfrak{q}\otimes_{R_{\phi^{-1}(\mathfrak{q})}} M_{\phi^{-1}(\mathfrak{q})}=0$$ which shows ##\mathfrak{q}\notin \operatorname{Supp}(S\otimes_R M)##.

Conversely, if ##\mathfrak{q}\notin \operatorname{Supp}(S\otimes_R M)##, by the above calculation ##S_\mathfrak{q}\otimes_{R_{\phi^{-1}(\mathfrak{q})}} M_{\phi^{-1}(\mathfrak{q})} = 0##. Let ##k(\mathfrak{q})## and ##k(\phi^{-1}(\mathfrak{q}))## be the residue fields of ##S_\mathfrak{q}## and ##R_{\phi^{-1}(\mathfrak{q})}##, respectively. Suppose ##\mathfrak{m}## is the maximal ideal of ##R_{\phi^{-1}(\mathfrak{q})}##. There are isomorphisms \begin{align*}0 &= k(\mathfrak{q})\otimes_{k(\mathfrak{q})} (S_\mathfrak{q} \otimes_{R_{\phi^{-1}(\mathfrak{q})}} M_{\phi^{-1}(\mathfrak{q})})\\ &\simeq k(\mathfrak{q}) \otimes_{R_{\phi^{-1}(\mathfrak{q})}} M_{\phi^{-1}(\mathfrak{q})}\\ &\simeq (k(\mathfrak{q}) \otimes_{k(\phi^{-1}(\mathfrak{q}))} k(\phi^{-1}(\mathfrak{q}))) \otimes_{R_{\phi^{-1}(\mathfrak{q})}} M_{\phi^{-1}(\mathfrak{q})}\\
&\simeq k(\mathfrak{q}) \otimes_{k(\phi^{-1}(\mathfrak{q}))} \frac{M_{\phi^{-1}(\mathfrak{q})}}{\mathfrak{m}M_{\phi^{-1}(\mathfrak{q})}} \end{align*} Since ##M## is a finitely generated ##R##-module, ##M_{\phi^{-1}(\mathfrak{q})}/\mathfrak{m}M_{\phi^{-1}(\mathfrak{q})}## is a finite-dimensional vector space over ##k(\phi^{-1}(\mathfrak{q}))##, say, of dimension ##n##. Then ##k(\mathfrak{q}) \otimes_{k(\phi^{-1}(\mathfrak{q}))} \frac{M_{\phi^{-1}(\mathfrak{q})}}{\mathfrak{m}M_{\phi^{-1}(\mathfrak{q})}} \simeq k(\mathfrak{q}) \otimes_{k(\phi^{-1}(\mathfrak{q}))} [k(\phi^{-1}(\mathfrak{q}))]^n \simeq k(\mathfrak{q})^n##. It follows that ##k(\mathfrak{q})^n = 0##, so ##n = 0##; this forces ##M_{\phi^{-1}(\mathfrak{q})} = \mathfrak{m}M_{\phi^{-1}(\mathfrak{q})}##. Nakyama's lemma implies ##M_{\phi^{-1}(\mathfrak{q})} = 0##, i.e., ##\mathfrak{q}\notin (\phi^*)^{-1}(\operatorname{Supp} M)##.
 
Back
Top