Positive Definite Cartan Matrices in Quantum Physics

Click For Summary
SUMMARY

The discussion centers on the properties of positive definite Cartan matrices in the context of quantum physics, specifically addressing their asymmetry and potential implications for symmetry breaking. The participants explore whether the non-symmetric nature of these matrices affects physical phenomena, such as spontaneous symmetry breaking or phase transitions. The conversation emphasizes the significance of Cartan matrices in defining metrics relevant to quantum mechanics and the role of simple Lie groups.

PREREQUISITES
  • Understanding of Cartan matrices and their mathematical properties.
  • Familiarity with quantum mechanics concepts, particularly symmetry breaking.
  • Knowledge of Lie groups and their relevance in quantum physics.
  • Basic proficiency in LaTeX for mathematical representation.
NEXT STEPS
  • Research the implications of spontaneous symmetry breaking in quantum field theory.
  • Study the role of Cartan matrices in the classification of simple Lie algebras.
  • Explore the relationship between Cartan matrices and phase transitions in condensed matter physics.
  • Learn about the mathematical formulation of metrics in quantum mechanics.
USEFUL FOR

This discussion is beneficial for theoretical physicists, mathematicians specializing in algebraic structures, and researchers interested in the intersection of quantum mechanics and group theory.

fresh_42
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
2025 Award
Messages
20,815
Reaction score
28,445
TL;DR
Cartan Matrices are not symmetric.
As I was looking for an example for a metric tensor that isn't among the usual suspects, I observed that the Cartan matrix I wanted to use is positive definite (I assume all are), but not symmetric. Are the symmetry breaks in quantum physics related to this fact?
 
Physics news on Phys.org
fresh_42 said:
I observed that the Cartan matrix I wanted to use is positive definite (I assume all are), but not symmetric. Are the symmetry breaks in quantum physics related to this fact?
We'll need a bit more info on what you (think you) mean by "symmetry breaks in quantum physics". Spontaneous symmetry breaking? Pathologies at boundaries between different phases of matter? Something else?
 
I just wondered whether this asymmetry in the matrix that in the end defines a metric for mathematicians, and which I have been told years ago on PF is therefore essentially responsible that especially simple Lie groups play such a prominent role in QM, has any physical consequences and if, what they are. And please, don't open a distraction with ##U(1)## or the ##A_l## series.
 
Last edited:
What precisely are you talking about? What are "Cartan matrices"?
 
\begin{align*} A_l &: &\begin{pmatrix}2&-1&0&&& \cdots &&0 \\ -1&2&-1&0&&\cdots &&0\\ 0&-1&2&-1&0&\cdots&&0\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdots &\cdot&\cdot\\ 0&0&0&0&0&\cdots&-1&2 \end{pmatrix}\\ \\ \hline &&\\ B_l &: &\begin{pmatrix}2&-1&0&&\cdots&&&0\\ -1&2&-1&0&\cdots&&&0\\ \cdot&\cdot&\cdot&\cdot&\cdots&\cdot&\cdot&\cdot\\ 0&0&0&0&\cdots&-1&2&-2\\ 0&0&0&0&\cdots&0&-1&2 \end{pmatrix}\\ \\ \hline &&\\ C_l &: &\begin{pmatrix}2&-1&0&&\cdots&&&0\\ -1&2&-1&&\cdots&&&0\\ 0&-1&2&-1&\cdots&&&0\\ \cdot&\cdot&\cdot&\cdot&\cdots&\cdot&\cdot&\cdot\\ 0&0&0&0&\cdots&-1&2&-1\\ 0&0&0&0&\cdots&0&-2&2 \end{pmatrix}\\ \\ \hline &&\\ D_l &: &\begin{pmatrix}2&-1&0&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&0\\ -1&2&-1&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&0\\ \cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot&\cdot\\ 0&0&\cdot&\cdot&\cdot&-1&2&-1&0&0\\ 0&0&\cdot&\cdot&\cdot&\cdot&-1&2&-1&-1\\ 0&0&\cdot&\cdot&\cdot&\cdot&0&-1&2&0\\ 0&0&\cdot&\cdot&\cdot&\cdot&0&-1&0&2 \end{pmatrix}\\ \\ \hline && \end{align*}
\begin{align*} E_6 &: &\begin{pmatrix}2&0&-1&0&0&0\\ 0&2&0&-1&0&0\\ -1&0&2&-1&0&0\\ 0&-1&-1&2&-1&0\\ 0&0&0&-1&2&-1\\ 0&0&0&0&-1&2 \end{pmatrix}\\ \\ \hline &&\\ E_7 &: &\begin{pmatrix}2&0&-1&0&0&0&0\\ 0&2&0&-1&0&0&0\\ -1&0&2&-1&0&0&0\\ 0&-1&-1&2&-1&0&0\\ 0&0&0&-1&2&-1&0\\ 0&0&0&0&-1&2&-1\\ 0&0&0&0&0&-1&2 \end{pmatrix}\\ \\ \hline &&\\ E_8 &: &\begin{pmatrix}2&0&-1&0&0&0&0&0\\ 0&2&0&-1&0&0&0&0\\ -1&0&2&-1&0&0&0&0\\ 0&-1&-1&2&-1&0&0&0\\ 0&0&0&-1&2&-1&0&0\\ 0&0&0&0&-1&2&-1&0\\ 0&0&0&0&0&-1&2&-1\\ 0&0&0&0&0&0&-1&2 \end{pmatrix}\\ \\ \hline\\ F_4 &: &\begin{pmatrix}2&-1&0&0\\ -1&2&-2&0\\ 0&-1&2&-1\\ 0&0&-1&2 \end{pmatrix}\\ \\ \hline &&\\ G_2 &: &\begin{pmatrix}2&-1\\ -3&2 \end{pmatrix}\\ \\ \hline && \end{align*}
 
  • Like
Likes   Reactions: Vanadium 50
Someone is good with TeX!
 

Similar threads

  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 15 ·
Replies
15
Views
880
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K