MHB System of Equations: (2x-1)(2y-1)

AI Thread Summary
The discussion focuses on solving a system of equations involving variables a, b, x, and y, specifically ax + by = 4, ax² + by² = -3, and ax³ + by³ = -3. The values for a and b are derived as a = (4y + 3)/(x(y - x)) and b = (-4x - 3)/(y(y - x)). Substituting these into the third equation leads to the expression 4xy + 3x + 3y - 3 = 0. The conclusion drawn is that the best deduced form for (2x - 1)(2y - 1) is 4 - 5(x + y), which is seen as unsatisfactory. An alternative expression involving (2x + 3/2)(2y + 3/2) yields a more conclusive result of 21/4.
juantheron
Messages
243
Reaction score
1
If a\;,b\;,x\;,y satisfy \begin{Bmatrix} ax+by=4\\\\ <br /> ax^2+by^2=-3 \\\\ <br /> ax^3+by^3=-3 \\\\ <br /> \end{Bmatrix}. Then (2x-1)(2y-1)=
 
Mathematics news on Phys.org
jacks said:
If a\;,b\;,x\;,y satisfy \begin{Bmatrix} ax+by=4\\\\ <br /> ax^2+by^2=-3 \\\\ <br /> ax^3+by^3=-3 \\\\ <br /> \end{Bmatrix}. Then (2x-1)(2y-1)=
Solve the first two equations for $a$ and $b$. You should get $a = \dfrac{4y+3}{x(y-x)}$, $b = \dfrac{-4x-3}{y(y-x)}.$ Now substitute those values of $a$ and $b$ into the third equation. That should lead to $4xy+3x+3y-3=0.$

At that point I run into trouble. The best that you can deduce about $(2x-1)(2y-1)$ from that last equation is that $(2x-1)(2y-1) = 4-5(x+y)$, which does not seem like a satisfactory answer. If instead the question had asked for $\bigl(2x+\frac32\bigr)\bigl(2y+\frac32\bigr)$ then you could have re-written $4xy+3x+3y-3$ as $\bigl(2x+\frac32\bigr)\bigl(2y+\frac32\bigr) -\frac{21}4$ to give the answer $21/4$, which somehow seems to be more like the sort of conclusion that the question calls for.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Replies
3
Views
2K
Replies
16
Views
4K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
5
Views
2K
Back
Top