MHB Tan (Theta - Pie) Answer Explained

  • Thread starter Thread starter captainnumber36
  • Start date Start date
  • Tags Tags
    Identity Trig
AI Thread Summary
Tan(theta - pi) equals tan(theta) due to the periodic nature of the tangent function, which has a period of pi radians. This means that tan(theta + pi) and tan(theta - pi) both simplify to tan(theta). The discussion clarifies that the use of "pie" was a misunderstanding, as "pi" is the correct term in this mathematical context. The tangent function's properties confirm that the initial assertion about the value being tan(theta) is accurate. Thus, the answer to Tan(theta - pi) is indeed tan(theta).
captainnumber36
Messages
9
Reaction score
0
What does Tan (Theta - Pie) = ?

I know Tan (theta + pie) = tan (theta).

They say the answer is tan (theta), but I think it's some kind of typo.
 
Mathematics news on Phys.org
captainnumber36 said:
What does Tan (Theta - Pie) = ?

I know Tan (theta + pie) = tan (theta).

They say the answer is tan (theta), but I think it's some kind of typo.

Pie is a dessert, while pi is a Greek letter used to represent the ratio of a circle's circumference to its diameter. Having said that, the period of the tangent function is $\pi$ radians, which means:

$$\tan(\theta+\pi k)=\tan(\theta)$$ where $k\in\mathbb{Z}$ (this means $k$ can be any integer, even negative ones)

So, it's not a typo, your book is correct.
 
captainnumber36 said:
What does Tan (Theta - Pie) = ?

I know Tan (theta + pie) = tan (theta).

They say the answer is tan (theta), but I think it's some kind of typo.

sum/difference identity for tangent ...

$\tan(a \pm b) = \dfrac{\tan{a} \pm \tan{b}}{1 \mp \tan{a} \cdot \tan{b}}$

now, let $a = \theta$ and $b = \pi$ ... substitute & evaluate
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top