A The abc conjecture and Virasoro algebra

  • A
  • Thread starter Thread starter mitchell porter
  • Start date Start date
AI Thread Summary
The discussion revolves around the controversy surrounding Shinichi Mochizuki's claimed proof of the abc conjecture and the attempts by Kirti Joshi to reconstruct it using an altered theoretical framework. Mochizuki's approach involves his Inter-Universal Teichmüller Theory, which aims to analyze algebraic objects through mappings across different universes. Critics, including Scholze and Stix, question the validity of Mochizuki's methods, while Joshi seeks to clarify these through his own Arithmetic Teichmüller Theory. A notable connection is made between Mochizuki's work and the Virasoro algebra, suggesting a deeper relationship between string theory and the mathematical concepts involved in the abc conjecture. The discussion highlights the complexities of these theories and the challenges of engaging with the mathematical community without formal credentials.
mitchell porter
Gold Member
Messages
1,497
Reaction score
779
TL;DR Summary
number theory and string theory
Peter Woit's anti-string-theory blog, "Not Even Wrong", also follows the controversy around Shinichi Mochizuki's claimed proof of the abc conjecture. Lately the number theorist Kirti Joshi has posted a few times about his attempt to reconstruct the controversial part of Mochizuki's argument in an altered theoretical framework. I spotted something about Joshi's work and tried to point it out, but apparently the comment isn't being allowed through, so I'll mention it here.

Mochizuki's theoretical framework is called "Inter-Universal Teichmüller Theory". Roughly speaking, Teichmüller Theory studies the moduli spaces of Riemann surfaces, and I think Mochizuki is referring to Grothendieck Universes, which are sets large enough to model most of what one wishes to do in mathematics, insofar as it can be based on set theory. (It might be easier to characterize a Grothendieck Universe by what it doesn't contain: it doesn't contain the very largest cardinals, nor does it encompass any "large categories", these being categories which are the size of a proper class.) There are generalizations of classical Teichmüller Theory to other kinds of objects, notably p-adic objects. Mochizuki's "inter-universal" theory is meant to compare certain algebraic objects in a way that is impossible in Grothendieck's theory of schemes, by detaching the additive and multiplicative parts of their algebra from each other.

Mochizuki's claimed proof of abc, as I understand it, starts by translating the proposition about a+b=c into a claim about elliptic curves (this is standard). Then he considers a lot of objects associated with such a curve, including a particular vector space; then (in physics language) he parallel-transports this ensemble of objects through a series of universes, by mapping the curve onto its counterpart in each universe, then the next, and so on, until he returns to the original instance of the curve. These mappings are somewhat underdetermined, due to three distinct "indeterminacies"... Then we see what has happened to the volume of a region of the vector space associated with the elliptic curve, in the course of this odyssey; and the abc inequality is deduced from this.

The dispute over Mochizuki's proof centers on the validity of this procedure. His critics Scholze and Stix claim that it cannot work as advertised; Mochizuki says their criticism only applies to an oversimplified strawman of his theory... Joshi, meanwhile, has developed an Arithmetic Teichmüller Theory, based on perfectoid spaces defined by Scholze, in which he thinks that Mochizuki's method can be more transparently reproduced. It seems neither Mochizuki nor Scholze accepts this, but Joshi is just getting on with his reconstruction of the proof anyway, in a series of papers.

Here is what I wanted to point out: In a progress report, "Mochizuki’s Corollary 3.12 and my quest for its proof", Joshi talks about the counterpart in his theory, of Mochizuki's three indeterminacies. He writes:
one important observation is that Mochizuki’s Indeterminacy of Type II [...] has a classical analog. It corresponds to the Virasoro action on Teichmuller and Moduli spaces which has been well-studied in Physics literature as well as algebraic geometry literature
Anyone who has studied string theory will recognize the name of Miguel Virasoro. The reason there is a connection to string theory, is that the Riemann surfaces of the original Teichmüller Theory, show up in string theory as the space-time surfaces that a string traces out as it propagates. The Virasoro algebra of transformations is one of the basic algebraic entities in string theory, and string theory path integrals are integrals over Teichmüller space.

This is all that I wanted to point out - the fascinating fact that some math which is absolutely central to string theory, has shown up in an attempt to re-derive Mochizuki's proof of the abc conjecture. This shouldn't be surprising given that versions of Teichmüller Theory play a role both in string theory and in Mochizuki's work... It would be very interesting if the connection went even deeper, e.g. if Mochizuki's "inter-universal" mappings truly correspond to an identifiable kind of duality or gauge transformation in string theory.
 
Mathematics news on Phys.org
This is a pretty deep topic and it’s unlikely anyone here will be able to comment on your thoughts. Have you tried posting it in a mathematical journal either as a letter to the editor or as a journal article?

Without math credentials, it will be very difficult if not impossible to get your comment heard in the community. Do you have any math profs that could mentor you and read your posting? They also may know someone who could comment on it.
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top