The coefficient of expansion for spin addition

Click For Summary

Discussion Overview

The discussion revolves around finding the coefficients ##\alpha## and ##\beta## in the expansion of a quantum state related to spin addition. Participants explore theoretical aspects of quantum mechanics, particularly focusing on the mathematical formulation of spin states and operators.

Discussion Character

  • Technical explanation
  • Mathematical reasoning
  • Debate/contested

Main Points Raised

  • One participant presents an equation involving coefficients ##\alpha## and ##\beta## in a spin state expansion and seeks assistance in determining these coefficients.
  • Another participant questions the source of the initial equation, indicating a need for clarification on its derivation.
  • A participant references a specific paper and attempts to relate their equations to those found in the appendix, suggesting a potential equivalence.
  • One participant proposes using the chapter on spin from Griffiths' "Introduction to Quantum Mechanics" to approach the problem, detailing the definitions of spin operators and their properties.
  • Mathematical expressions are provided to illustrate the relationships between the spin operators and the coefficients, leading to a derived relationship for ##\beta/\alpha##.
  • Further calculations are presented to show how the coefficients can be normalized and expressed in terms of the quantum numbers involved.
  • A participant expresses gratitude for the assistance received, indicating a positive reception of the technical discussion.

Areas of Agreement / Disagreement

The discussion contains multiple viewpoints and approaches to the problem, with no clear consensus on the derivation of the coefficients or the interpretation of the equations. Participants explore different methods and references without resolving the underlying questions definitively.

Contextual Notes

Participants rely on specific definitions and properties of quantum spin operators, which may not be universally agreed upon. The discussion also involves complex mathematical steps that are not fully resolved, leaving some assumptions and dependencies unaddressed.

hokhani
Messages
586
Reaction score
22
TL;DR
Addition of spins
In the following expansion how to find the coefficients ##\alpha## and ##\beta##?
$$|S, S_z\rangle = \alpha |S+1/2, S_z+1/2\rangle \otimes |1/2,-1/2\rangle + \beta |S+1/2, S_z-1/2\rangle \otimes |1/2,+1/2\rangle$$
 
Physics news on Phys.org
hokhani said:
In the following expansion
Where are you getting this from?
 
We can use the chapter on spin from Grififths' Introduction to Quantum Mechanics to solve this problem. Define ##\vec{S}## as the total spin operator, with components ##S_x##, ##S_y## and ##S_z##. Also define the spin raising and lowering operators as ##S_\pm = S_x \pm i S_y\,##. For a state ##\ket{s,m}## we then have (in units of ##\hbar=1##):
$$
\begin{aligned}
S^2 \ket{s,m} = s(s+1)\ket{s,m}, \quad S_z \ket{s,m} = m\ket{s,m} \\[0.8em] \quad S_\pm \ket{s,m} = \sqrt{s(s+1)-m(m\pm1)} \ket{s,m\pm1}
\end{aligned} \tag 1$$To solve this problem, we will check that both the LHS and RHS have the same eigenvalue under ##S^2##. This will give us ##\alpha## and ##\beta## (up to an overall phase factor).

I'll introduce a little notation here. We will say that the RHS state is ##\ket\chi##, which is defined as
$$
\begin{aligned}
&\qquad\qquad\qquad\qquad\qquad \ket\chi = \alpha\ket{\chi_1} + \beta\ket{\chi_2}, \,\,\,\text{where} \\[0.8em]
&\ket{\chi_1} = \ket{s+1/2,m+1/2}\ket{1/2,-1/2}, \quad \ket{\chi_2} = \ket{s+1/2,m-1/2}\ket{1/2,1/2}
\end{aligned} \tag 2$$
The operator ##S^2## which now acts on both spin states of the RHS can be written as
$$S^2 = (S^{(1)})^2 + (S^{(2)})^2 + 2 \vec{S}^{(1)} \cdot \vec{S}^{(2)}$$ where the components ##S^{(1)}## and ##S^{(2)}## act on the spin-##s## and spin-##1/2## components of ##\ket\chi## respectively.

It will be helpful to express the product ##2 \vec{S}^{(1)} \cdot \vec{S}^{(2)}## in terms of the raising and lowering operators. With a little algebra, we have
$$
\begin{aligned}
2 \vec{S}^{(1)} \cdot \vec{S}^{(2)} &= 2 \left( S_x^{(1)}S_x^{(2)} + S_y^{(1)}S_y^{(2)} + S_z^{(1)}S_z^{(2)} \right) \\
&= \ldots \\
&= S_+^{(1)}S_-^{(2)} + S_-^{(1)}S_+^{(2)} + 2S_z^{(1)}S_z^{(2)}
\end{aligned}
\tag 3
$$Finally, we are ready to compute the effect of ##S^2## on ##\ket\chi##. Using equations (1), (2) and (3) we have
$$
\begin{aligned}
2 \vec{S}^{(1)} \cdot \vec{S}^{(2)} \ket{\chi_1} &= \sqrt{(s+1)^2-m^2} \ket{\chi_2} - (m+1/2)\ket{\chi_1} \\

2 \vec{S}^{(1)} \cdot \vec{S}^{(2)} \ket{\chi_2} &= \sqrt{(s+1)^2-m^2} \ket{\chi_1} + (m-1/2)\ket{\chi_2}
\end{aligned}
\tag 4
$$It is easy to see that ##\ket\chi## is an eigenstate of ##(S^{(1)})^2## and ##(S^{(2)})^2##, and we expect it to be an eigenstate of ##S^2## as well. Hence, it should be an eigenstate of ##\vec{S}^{(1)} \cdot \vec{S}^{(2)}##. Observe that using (4), we can write
$$
2 \vec{S}^{(1)} \cdot \vec{S}^{(2)} \ket\chi = \alpha \left( -(m+1/2) + \frac \beta \alpha \sqrt{(\ldots)} \right) \ket{\chi_1} + \beta \left( (m-1/2) +\frac \alpha \beta \sqrt{(\ldots)} \right) \ket{\chi_2} \tag 5
$$Hence for ##\ket\chi## to be an eigenstate, we must have
$$
-(m+1/2) + \frac \beta \alpha \sqrt{(\ldots)} = (m-1/2) +\frac \alpha \beta \sqrt{(\ldots)} \tag 6
$$Solving for ##\beta/\alpha## yields
$$
\frac \beta \alpha = \frac{m \pm (s+1)}{\sqrt{(s+1)^2-m^2}} \tag 7
$$Substituting back into (5), we see that
$$
2 \vec{S}^{(1)} \cdot \vec{S}^{(2)} \ket\chi = (\pm s \pm 1 - 1/2) \ket\chi \tag 8
$$Computing the rest of ##S^2 \ket\chi## is simple:
$$
\begin{aligned}
S^2 \ket\chi &= (S^{(1)})^2 \ket\chi + (S^{(2)})^2 \ket\chi + 2 \vec{S}^{(1)} \cdot \vec{S}^{(2)} \ket\chi \\[0.8em]
&= (s+1/2)(s+3/2) \ket\chi + (1/2)(3/2) \ket\chi + (\pm s \pm 1 - 1/2) \ket\chi
\end{aligned}
\tag 9$$We want the negative case because it yields the eigenvalue ##s(s+1)##, which matches the eigenvalue when ##S^2## acts on ##\ket{s,m}##. Hence, we take the negative case of (7)
$$
\frac \beta \alpha = \frac{m-(s+1)}{\sqrt{ (s+1)^2 - m^2 }}
$$We can then use normalisation to obtain the coefficients ##\alpha## and ##\beta##. Because ##\ket{\chi_1}## and ##\ket{\chi_2}## are orthonormal (and that ##\ket{s,m}## is correctly normalised), we must have ##\alpha^2 + \beta^2 = 1##. After some more algebra, we obtain
$$
\alpha = \pm \sqrt{\frac{s+m+1}{2s+2}}, \quad \beta = \mp \sqrt{\frac{s-m+1}{2s+2}}
$$which matches the expression in the paper.
 
  • Like
Likes   Reactions: weirdoguy and hokhani
Thank you very much Jonomyster. It was great.
 
Last edited:
  • Care
Likes   Reactions: Jonomyster

Similar threads

  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K