MHB The cumulative hierarchy and the real numbers

hmmmmm
Messages
27
Reaction score
0
We define the cumulative hierarchy as:

$V_0=\emptyset$

$V_{\alpha+1}=\mathcal{P}(V_\alpha)$

If $\lambda$ is a limit ordinal then $V_\lambda=\bigcup_{\alpha<\lambda} V_\alpha$

Then we have a picture of a big V where we keep building sets up from previous ones and each $V_\alpha$ is the class (set?) of all sets formed from the previous stages.

Now I am wondering how we get from here to a construction of the real numbers? I can see that we will have a set of size $|\mathbb{R}|$ by $V_{\omega+2}$ and then we could go on to construct the reals formally via dedekind cuts of cauchy sequences. However are the sets in the hierarchy well founded in which case $\mathbb{R}$ would not be there?

Thanks for any help
 
Physics news on Phys.org
I'm not too sure how to mark a thread as solved or something but my confusion here came from thinking that unions and power sets preserved well ordering, which they do not
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top