A The Lagrangian of a free particle ##L=-m \, ds/dt##

  • A
  • Thread starter Thread starter Kostik
  • Start date Start date
Kostik
Messages
274
Reaction score
32
TL;DR Summary
How to show that ##L=-m \, ds/dt## for a free particle.
In Dirac's "General Theory of Relativity" (p. 52), he postulates that the action for a free particle of mass ##m## is $$I=-m \int ds$$ hence the Lagrangian is $$L=-m\frac{ds}{dt} = -m\frac{\sqrt{\eta_{\mu\nu}dx^\mu dx^\nu}}{dt}
\, .$$ To confirm that ##-m## is the correct coefficient, he assumes flat spacetime (special relativity) and calculates $$\frac{\partial L}{\partial \dot{x}^k} = -m\frac{\partial}{\partial \dot{x}^k}\left( \frac{ds}{dt}\right) = m\frac{ \dot{x}^k }{ ds/dt } = m \frac{dx^k}{ds}$$ which is the correct formula for relativistic 4-momentum ##p^k##. ("As it ought to be", says Dirac.)

##\qquad## But doesn't this assume that $$p^k = \frac{\partial L}{\partial \dot{x}^k} \quad ?$$ This is true for the non-relativistic Lagrangian for a free particle $$L=T-U = \frac{1}{2}mv^2 \qquad (*)$$ but is it true for a relativistic particle?

##\qquad## (Landau-Lifshitz give what seems to be a more convincing confirmation. They also postulate that ##L= \kappa \, ds/dt##, and assume flat spacetime (special relativity) where ##ds^2 = \eta_{\mu\nu}dx^\mu dx^\nu##. Then $$L=\kappa \frac{ds}{dt}=\kappa \sqrt{1-v^2} \, .$$ Hence, for velocities ##v \ll 1##, we have $$L = \kappa - \frac{1}{2}\kappa v^2 + O(v^4) \, .$$ The nonrelativistic Lagrangian is shown above in ##(*)##, so to get the correct kinetic energy term, we must have ##\kappa = -m##.)

##\qquad## I'd like to understand Dirac's confirmation that ##\kappa = -m##. How does he know in advance that $$p^k = \frac{\partial L}{\partial \dot{x}^k} $$ for a relativistic particle? It seems like he's using circular reasoning.

##\qquad## I think what Dirac forgot to add was "Since ##p^k = \partial L / \partial \dot{x}^k## in the case ##v \ll 1##, we see that ##\kappa = -m##."
 
Last edited:
Physics news on Phys.org
IIRC, Dirac uses Greek for 0-3, while Latin for 1-3, unlike L-L who use Greek for 1-3, and Latin for 0-3.

So if we try to switch from the Lagrangian density \mathcal{L} to the Hamiltonian formalism, we define the 4-momentum as

\begin{equation} p_\mu =: \frac{\partial \mathcal{L} \left(x,\dot{x}\right)}{\partial \dot{x}^\mu}\end{equation},

where the dot is the worldline parameter (most commonly chosen as the proper time).

Why would going Greek > Latin be circular reasoning?
 
I think it's circular reasoning because ##p^k = \partial L / \partial \dot{x}^k## is derived for a non-relativistic free particle, where ##L=mv^2/2##. But, otherwise, ##p^k \equiv \partial L / \partial \dot{x}^k## is the definition of the "conjugate momentum". We cannot simultaneously define ##p^k \equiv \partial L / \partial \dot{x}^k## and ##p^k \equiv m\, dx^k/ds = mv^k##.

I think Dirac needs to reduce to the non-relativistic case (like L-L) in order to determine ##\kappa##.

##\qquad## I think what Dirac should have done is this: Consider the case ##v \ll 1##, where ##L = T = mv^2/2##. Then we confirm by calculation that $$\frac{\partial L}{\partial \dot{x}^k} = \frac{m}{2}\frac{\partial v^2}{\partial \dot{x}^k}=m\dot{x}^k \,. $$ Comparing this with $$\frac{\partial L}{\partial \dot{x}^k} = -\kappa \frac{dx^k}{ds} $$ and using ##ds=dt## when ##v \ll 1##, we obtain ##\kappa = -m##.
 
Last edited:
Kostik said:
TL;DR Summary: How to show that ##L=-m \, ds/dt## for a free particle.

But doesn't this assume that pk=∂L∂x˙k? This is true for the non-relativistic Lagrangian for a free particle
This is also true for SR Lagrangian. For SR Lagrangian pk has the factor \frac{1}{\sqrt{1-v^2/c^2}} as we see in experiments. Analytical mechanics holds also in special relativity only by changing the Lagrangian functions.
 
Last edited:
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Back
Top