The little theorem and its implication of coprimality.

  • Context: MHB 
  • Thread starter Thread starter bamuelsanks
  • Start date Start date
  • Tags Tags
    implication Theorem
Click For Summary
SUMMARY

The discussion centers on the Lucas primality test and the implications of Euler's Totient Theorem regarding coprimality. Participants clarify that if \( a^{n-1} \equiv 1 \mod n \), then \( a \) and \( n \) are coprime, which is a converse of Euler's theorem. The identity \( \varphi(n) = n-1 \) holds only when \( n \) is prime, and the proof involves understanding the prime factors of \( a^{n-1} \) and their relationship to \( n \). The conversation emphasizes the importance of recognizing that \( n \) does not need to be prime for the coprimality condition to hold.

PREREQUISITES
  • Understanding of Euler's Totient Function, \( \varphi(n) \)
  • Familiarity with modular arithmetic and congruences
  • Basic knowledge of number theory concepts, including primality tests
  • Experience with group theory, particularly in relation to units in modular arithmetic
NEXT STEPS
  • Study the Lucas primality test in detail
  • Learn about Euler's Totient Theorem and its applications
  • Explore proofs of coprimality conditions in number theory
  • Investigate group theory concepts related to modular arithmetic
USEFUL FOR

Students of number theory, mathematicians interested in primality testing, and anyone looking to deepen their understanding of modular arithmetic and coprimality.

bamuelsanks
Messages
3
Reaction score
0
Hi guys.

I'm rather new to number theory, and as part of an assignment I have been learning about various different primality tests.
One of these tests is the Lucas primality test.
As part of the reasoning behind the test, wikipedia states:
"If [$a^{n-1} \equiv 1 \textrm{ (mod }n\textrm{)}$] holds for a, we can deduce that a and n are coprime".
Would anybody be able to help me understand why this is true?

Thanks,
SB
 
Mathematics news on Phys.org
A theorem due to Leonhard Euler...

http://mathworld.wolfram.com/EulersTotientTheorem.html

... establishes that for all a coprime to n is...

$\displaystyle a^{\varphi (n)} \equiv 1\ \text{mod}\ n$ (1)

... where $\varphi(n)$ is the 'Euler's Totiens Function'. Now if n is prime is $\displaystyle \varphi(n)=n-1$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
A theorem due to Leonhard Euler...

http://mathworld.wolfram.com/EulersTotientTheorem.html

... establishes that for all a coprime to n is...

$\displaystyle a^{\varphi (n)} \equiv 1\ \text{mod}\ n$ (1)

... where $\varphi(n)$ is the 'Euler's Totiens Function'. Now if n is prime is $\displaystyle \varphi(n)=n-1$...

Kind regards

$\chi$ $\sigma$

That is the converse of what the OP is trying to prove. Secondly, the OP does not say that $n$ is prime.
 
Last edited:
What is written by Alexmahone is true. The converse of the Euler's totient theorem established that if...

$\displaystyle a^{\varphi(n)} \equiv 1\ \text{mod}\ n$ (1)

... then a and n are coprime. The important point however is that the identity $\displaystyle \varphi(n)=n-1$ holds only for n prime...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
What is written by Alexmahone is true. The converse of the Euler's totient theorem established that if...

$\displaystyle a^{\varphi(n)} \equiv 1\ \text{mod}\ n$ (1)

... then a and n are coprime. The important point however is that the identity $\displaystyle \varphi(n)=n-1$ holds only for n prime...

Kind regards

$\chi$ $\sigma$

Honestly, I don't think you've proved anything. If you think you have, could you please write your proof out?

To be precise, I don't see how you went from $a^{n-1}\equiv 1\pmod{n}$ to $a^{\phi(n)}\equiv 1\pmod{n}$. Note that $n$ need not be prime.
 
Last edited:
bamuelsanks said:
Hi guys.

I'm rather new to number theory, and as part of an assignment I have been learning about various different primality tests.
One of these tests is the Lucas primality test.
As part of the reasoning behind the test, wikipedia states:
"If [$a^{n-1} \equiv 1 \textrm{ (mod }n\textrm{)}$] holds for a, we can deduce that a and n are coprime".
Would anybody be able to help me understand why this is true?

If $a^{n-1} \equiv 1 \pmod n$ then $a^{n-1} = 1+kn$ for some integer $k$. Thus $a^{n-1}$ and $n$ cannot have any prime common factor. But the prime factors of $a^{n-1}$ are the same as those of $a$. Hence $a$ and $n$ are coprime.
 
Opalg said:
If $a^{n-1} \equiv 1 \pmod n$ then $a^{n-1} = 1+kn$ for some integer $k$. Thus $a^{n-1}$ and $n$ cannot have any prime common factor. But the prime factors of $a^{n-1}$ are the same as those of $a$. Hence $a$ and $n$ are coprime.

You didn't use the fact that the exponent of $a$ is $n-1$, so is it true for any exponent?
 
Thanks for the quick replies!
I understand it now, though I couldn't quite follow chisigma's response unfortunately.
Apologies for not making clear that $n$ was not necessarily prime.

Thanks again,
SB
 
Uses Bezout's idenity. We have that we can write [math]a^{n-1}=kn+1[/math] Now, we have that 1=-kn+a^{n-1}. As this is the least possible positive number, it follows that it's the least positive positive number writable as a linear combo of n and a (n>1 otherwise, it's trivial). Hence, gcd(n,a)=1.
 
  • #10
a more group-theoretical approach (assuming n ≥ 2):

suppose an-1 = 1 (mod n).

then [a] (the residue of a mod n)

is a unit of Zn (with inverse [an-2]).

this means gcd([a],n) = 1.

since a = [a] + kn, we have:

s([a]) + tn = 1 so:

s(a - kn) + tn = 1, and:

sa + (t-k)n = 1, which shows gcd(a,n) = 1.
 
  • #11
If $a\equiv b\pmod n$, then $(a,n)=(b,n)$. This can be seen by writing $a=b+nk$, for some integer $k$.

Here, $(a^{n-1},n)=(1,n)=1$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
6
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
7K
  • · Replies 175 ·
6
Replies
175
Views
27K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K