1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The most beautiful chain of equalities I have ever seen

  1. Jul 17, 2014 #1
    I was doing some basic analysis of the Dedekind eta function and some Dirichlet series and the following equality just fell out:

    [tex]\sum_{k=1}^\infty\frac{\mu (k)-\varphi (k)}{k}\log \left( 1-\frac{1}{\phi^k} \right) = \prod_{k=1}^\infty \left( 1-\frac{1}{\phi^k} \right)^{2\pi i\frac{\mu (k)-\varphi (k)}{k}}[/tex]

    where [itex]\mu , \varphi , \phi [/itex] are the Möbius function, Euler totient function, and golden ratio respectively.

    Now, at first, this looks almost nonsensical because it demonstrates equality between a product and its logarithm. I.e. exponentiating gives product=e^product^2*pi*i (or you can take the logarithm if you can see it better this way, personally, I'm better with products than sums, and definitely the logarithm of an infinite sum which you would most likely need to refactor and deal with possible rearrangement issues... yikes). It follows that, in a sense, this form is redundant, for we must have

    [tex]\left(\prod_{k=1}^\infty \left( 1-\frac{1}{\phi^k} \right)^{\frac{\mu (k)-\varphi (k)}{k}}\right)^{2\pi i} = 1 [/tex]

    Furthermore, this implies

    [tex]\sum_{k=1}^\infty\frac{\mu (k)-\varphi (k)}{k}\log \left( 1-\frac{1}{\phi^k} \right) = 1[/tex]


    [tex]\prod_{k=1}^\infty \left( 1-\frac{1}{\phi^k} \right)^{\frac{\mu (k)-\varphi (k)}{k}} = e[/tex]

    Finally, using Dirichlet convolution and inversion and the basic properties of the logarithm and geometric series, we can show that
    for 0 < x < 1

    [tex]\sum_{k=1}^\infty\frac{\mu (k)}{k}\log \left( \frac{1}{1-\frac{1}{x^k}} \right) = x[/tex]


    [tex]\sum_{k=1}^\infty\frac{\varphi (k)}{k}\log \left( \frac{1}{1-\frac{1}{x^k}} \right) = \frac{x}{1-x}[/tex]


    [tex]\sum_{k=1}^\infty\frac{\mu (k)}{k}\log \left( \frac{1}{1-\frac{1}{\phi^k}} \right) = \frac{1}{\phi}[/tex]


    [tex]\sum_{k=1}^\infty\frac{\varphi (k)}{k}\log \left( \frac{1}{1-\frac{1}{\phi^k}} \right) = \frac{\frac{1}{\phi}}{1-\frac{1}{\phi}} = \phi[/tex]

    The point of this result is that it suggests a deep relation between the prime numbers and chaos,

    I was hoping that anyone who reads this would share their thoughts and insights on this relationship, or possibly similar results.
  2. jcsd
  3. Jul 18, 2014 #2

    Simon Bridge

    User Avatar
    Science Advisor
    Homework Helper

    Sure - google for "prime numbers and chaos math".
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Similar Threads for beautiful chain equalities
I Proof: 0.9999 does not equal 1
I Two interesting equalities