B The Mystery of Excited Electrons: Are They Moving Away from the Nucleus?

Mustafa Bayram
Messages
7
Reaction score
0
when an electron is excited to the conduction band is it move further from the nucleus?
Are free electrons in the conduction band further from valence electrons?
I saw this picture that seems problematic to me. what do you think?

conduction band.png
 
Physics news on Phys.org
I am not sure what that picture represents, but (1) it looks like a very classical-minded picture and (2) the band structure is a feature in energy, not in space.

Generally speaking, higher-energy electrons are farther away from the nucleus, and therefore further away from core electrons. But the proper description is quantum mechanical, so you can't assign a precise position to an electron. Even high-energy electrons have a non-zero probability of being found near the nucleus.

In the conduction band, electrons are no longer tethered to a particular atom and are free to move over long distances.
 
DrClaude said:
I am not sure what that picture represents
Me neither, but for some reason I remember that I need to pick up some thing at Target.
DrClaude said:
In the conduction band, electrons are no longer tethered to a particular atom
This is key. Can you write it again?

If all the electrons were strongly localized to a nucleus, you wouldn't have conduction!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top