I The number of intersection graphs of ##n## convex sets in the plane

Click For Summary
The discussion centers on the number of intersection graphs formed by n convex sets in the plane, specifically showing that this number is at least 2^{Ω(n^2)}. Participants explore the relationship between intersection graphs of simple curves and convex sets, suggesting that proving the lower bound for curves may involve constructing various configurations. One example provided involves parallel lines with detours crossing other curves, illustrating how independent choices can lead to different intersection graphs. However, this example is deemed insufficient for reaching the desired lower bound, prompting a search for more robust methods. The conversation emphasizes the complexity of proving the intersection graph count and the need for innovative approaches.
kmitza
Messages
17
Reaction score
4
TL;DR
My friend gave me a problem that's been given in her combinatorial geometry class, I have been struggling with finding any ideas on how to do it. I don't have many tools from this topic and I might not understand any hints/solutions but I would still like to see if people have any ideas
Let ##S## be a set of n geometric objects in the plane. The intersection graph of ##S## is a
graph on ##n## vertices that correspond to the objects in ##S##. Two vertices are connected
by an edge if and only if the corresponding objects intersect.

Show that the number of intersection graphs of ##n## simple curves in the plane is at least ##2^{\Omega(n^2)}##.

I thought that this would be easy to see, online I found out that this is equivalent to finding this number is equivalent to finding the number for convex sets. This doesn't change the nature of the problem though and I think this shouldn't be too hard to prove but I can't figure it out. Any hints and ideas on how to think about this would be appreciated
 
Mathematics news on Phys.org
What is the definition of simple curve here? I'm not sure why you think convex sets are involved.
 
You might be able to show how to construct curves in enough different ways to reach that limit.

Imagine a set of N parallel lines parallel to the x axis. At x=1, line 1 at the lowest y value makes a "detour" crossing 0...n-1 other curves above it. At x=2, line 2 makes a detour crossing 0...n-2 other curves above it. And so on. For each line the choice is independent and each choice leads to a different intersection graph, so we get (n-1)! different intersection graphs. That's not enough, you'll need a better approach, but it's an example how you can show a lower bound.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 12 ·
Replies
12
Views
7K
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
Replies
4
Views
9K
  • · Replies 12 ·
Replies
12
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K