my_wan said:
We absolutely know, even without QM or the classical thermodynamics verses statistical mechanics analogy, that position is purely contextual.
Hang on-- from what I've seen on here, you and I are absolutely the only two people who believe that statement with the "even without" part in there. PBR certainly don't-- they hold that anyone who is a "realist" must hold that the basic building blocks of any theory that works must work because they are real. So if classical mechanics says there is a concept of exact position and it helps us get the answers right, then only some whacko "anti-realist" in 1860 could have claimed that exact position is not real. Indeed, if some analog of the PBR theorem were applied to classical mechanics, you can see what a "complete set of properties" would be interpreted as:
exact positions. Everyone else seems happy with defining a realist as someone who believes a theory is about reality until it is found to not agree with some experiment, and that is certainly how PBR interpret realism in regard to quantum mechanics.
We even new it in terms of Galilean relativity in Newton's time. It's the main motivation behind a very fundamental principle called coordinate or background independence. Hence a coordinate choice is by definition not a physical choice.
The coordinate choice determines the label for the position, not the idea that there is a position there. By the definition of "realist" that everyone here seems all too happy to use, any classical mechanics realist would have to hold that exact positions are real, even if a coordinate choice is required to give those exact positions a numerical label. I'm saying it's high time we didn't require realists to be that naive.
Relativity merely articulated how these contextual variables are related. Even on the face a velocity can be both zero and nonzero at the same time, depending on the nonphysical coordinate choice chosen.
Again, that is conflating the numerical label of a velocity with the ontological construct of an exact velocity that may yet be unlabeled. Classical mechanics is usually framed as advancing that ontological construct, even though everyone knows the numerical labels are coordinate dependent. (Personally, I don't think classical mechanics should require that ontological construct at all, or indeed any fundamental ontological constructs, and on that I believe we are the only two here who agree.)
The main point is that these contextual variables do not rule out ontic constructs in which we are then free to contextualize in a bewildering number of coordinate choices or spaces. Yet all valid choices transform into one another in one way or the other, no matter how different they appear on the surface or involve apparently incongruent definitions in one coordinate choice as opposed to another.
Sure, they transform into one another in ways that are described by the theory. That means even the transformations between these fundamentally non-ontological constructs are also fundamentally non-ontological, they are all borrowed from the only place they actually exist: mathematical structures. The same holds for symmetries and group properties, all borrowed from the places where they actually exist to be used in epistemological applications to the real world, said like a true realist should say it.
To many ontic realist this is precisely because a nonphysical coordinate choice is merely an invention for contextualizing a common underlying ontic state.
Yes, I agree that self-styled "ontic realists" would say that, but that doesn't change the fundamental oxymoron living behind the term "ontic realist." Those words are contradictory because belief in a true ontology means committing to a reality that exists in one's own mind, where those mathematical structures exist, and the belief the reality is fundamentally housed in our minds is idealism, not realism.
Even the apparent degrees of freedom can vary as a result of coordinate choice. Yet any valid model involving any coordinate choice still must transform via symmetries into each other, because the ontic system is the same system and is doing nothing different as a result of our coordinate choice.
There is only one reason these transformation have to work like that: science demands they get the same answer. That's it, we throw out what doesn't get the same answer, and we are left with those kinds of transformations. There's nothing ontic about it, it's still pure scientific epistemology.
Epistemicists have their own varying ways of conceptualizing this commonality, which is no less empirically valid.
True, and also has the added advantage of being internally consistent, avoiding the mind projection fallacy.
We even have coordinate independent mathematical formulations to explicitly recognize this fact.
Yes, we have all kinds of useful mathematical structures that we borrow from to fit into scientific epistemology. None of that changes the demonstrable fact that the ontology is always housed in the mathematical structure, so always in the minds that recognize that structure. To claim that is where the reality lives is thus idealism, or else it is the quintessential mind projection fallacy.
Symmetries provide a good example. The ability to conceptualize a symmetry, and recognize its usefulness in practice, is demonstrably housed in the intelligence. A symmetrical rock has no idea it is symmetrical. We find that symmetries are exceptionally simple and powerful, so the temptation to imagine a true ontology there is hard to resist. Yet the realist should resist it, because the realist should recognize the trappings of idealism-- if reality has to look like my thoughts, then I am equating reality with my thoughts about reality. That's the mind projection fallacy! It doesn't make any difference how useful the thought is, it's still idealism. The realist should expect that ultimately, every symmetry was made to be broken.
I'll even go a step farther and say, in my opinion, that philosophical stances, so long as they are not at odds with the underlying facts of the system, are equivalent to a nonphysical coordinate choice. No matter how diametrically opposed two philosophical stances appear on the surface.
I agree with that to some degree-- but I would point out that if an ontic view can be transformed seamlessly into an epistemic one, which one was fundamentally correct in the first place?
So a coordinate choice by definition defines the coordinate space as nonphysical, while whatever it is that defines the commonalities that allows one to be transformed into the other is the reality.
The commonalities are commonalities in the mathematical structures that are being borrowed from. So if they are the reality, then the mathematical structures are the reality, yet the mathematical structures are recognized and identified and characterized in our intelligence. When reality is housed in the mind, that is idealism, or it is the mind projection fallacy. One cannot have one's cake and eat it too.
If you think of a model strictly in terms of the coordinate choice used to define it, and the apparent definitions that particular choice entails, then of course the only sane perspective to take is a purely epistemic one.
But the epistemic view can also include the recognition that the coordinates don't matter. It's still epistemic to notice that-- indeed, it is even more epistemic to notice the commonalities of thoughts that all lead to the same place. When there was an "aether", there was something much more ontic there than where there is relativity. What aspect of having all observers able to use the same laws makes those laws ontic in character? It is a quintessentially epistemic law that works for any mind that would try to use it, an ontic law shouldn't care if it requires preferred minds because it is true outside of those minds.