Fredrik said:
I don't really have a problem with that. If I thought the rest of the argument was sound, I would be pointing out that it's not obvious that such a theory exists, but I would still find their result interesting.
The key issue here is whether we should regard quantum mechanics as incomplete compared to a physical theory that would be possible (Einstein's view), or simply incomplete compared to our naive preconceptions about what a physical theory ought to be (i.e., we should not expect to
completely represent the properties of a system with a mathematical object, either because the properties can't be represented that way, or don't exist in the first place). The article appears to consider it a "mild assumption" to take the former view, so does so, and shows that the ensemble view is inconsistent with that view. But I see nothing inconsistent in the ensemble view with the latter stance, and to me, the key question is not ensemble vs. real state, it is that first issue. So if we must take a stance on the first issue to follow their proof, then we have already ducked the most important question.
What bothers me is that they're saying that if the second view of QM (the statistical one) is correct, i.e. if a state vector doesn't accurately represent the properties of a single system, then the state vector isn't determined by λ.
That is OK within the assumptions they are making to give their argument. They are saying that if there are "properties" of individual systems, then either knowledge of the properties suffices to specify the state vector, or it doesn't. If it does, then each state vector has a correspondence to its own unique possible collection of properties-- i.e., if there are properties of individual systems, then the state vector limits the possibilities for those properties, so it does convey information about individual systems. If knowledge of the properties doesn't uniquely specify the quantum state, then it must be possible for the same properties to be associated with two different state vectors. That's what they use to get a contradiction. I think they are saying that if two state vectors connect with all different properties, those vectors have to be orthogonal, but by assumption they have two states that are not orthogonal, so they must have properties that appear with both state vectors-- unless the state vectors are themselves properties.
But if I was a proponent of the ensemble interpretation, I would simply claim that the whole reason I need an ensemble interpretation is that individual systems don't have properties like that! The "true state" of a system is not just a collection of eigenvalues for experiments we can think to do on it. (Whereas if I thought they did have properties like that, I'd call them hidden variables, and take the deBroglie-Bohm approach rather than the ensemble interpretation anyway.)