MHB The set {0,1}^ω is not countable

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Set
Click For Summary
The set {0,1}^ω, representing infinite sequences of 0s and 1s, is proven to be uncountable through a contradiction argument. Assuming it is countable allows for the enumeration of its elements, leading to the construction of a new sequence that cannot be included in the enumeration. This demonstrates that {0,1}^ω cannot be equinumerous with the natural numbers, confirming its uncountability. The discussion also touches on the relationship between {0,1}^ω and its power set, suggesting that the uncountability of {0,1}^ω implies it is similar to the power set of the natural numbers. The importance of its infinitude is underscored in the context of these proofs.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Smile)

Proposition:

The set $\{0,1\}^{\omega}$ of the finite sequences with values at $\{0,1\}$ is not countable.

Proof:

$$\{ 0,1 \}^{\omega}=\{ (x_n)_{n \in \omega}: \forall n \in \omega \ x_n \in \{0,1\} \}$$

From the following theorem:

[m] No set is equinumerous with its power set.[/m]

and since the set $\{0,1\}^{\omega}$ is infinite, we have that the set $\{0,1\}^{\omega}$ is not equinumerous with $\omega$.
So this means that the powerset of $\{ 0,1 \}^{\omega}$ is $\omega$, right?But how do we deduce that?

Also at which point do we use the fact that $\{ 0,1 \}^{\omega}$ si infinite? :confused:
 
Physics news on Phys.org
Hi evinda,

To show that $\{0,1\}^\omega$ is uncountable, argue indirectly. Suppose, by way of contradiction, that $\{0,1\}^\omega$ is countable. Then the elements can be enumerated

$$x^{(1)}, x^{(2)}, x^{(3)},\ldots$$

Let $y$ be the element of $\{0,1\}^\omega$ such that $y_n = 1 - x_n^{(n)}$ for all $n\in \omega$, i.e., $y_n = 0$ if $x_n^{(n)} = 1$ and $y_n = 1$ if $x_n^{(n)} = 0$. Then $y$ does not belong to the list of $x$'s. Therefore, $\{0,1\}^\omega$ is uncountable.
 
Which function could we pick in order to show that $\{0,1\}^{\omega} \sim \mathcal{P} (\omega)$ ?
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 28 ·
Replies
28
Views
6K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K