MHB The set {0,1}^ω is not countable

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Set
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Smile)

Proposition:

The set $\{0,1\}^{\omega}$ of the finite sequences with values at $\{0,1\}$ is not countable.

Proof:

$$\{ 0,1 \}^{\omega}=\{ (x_n)_{n \in \omega}: \forall n \in \omega \ x_n \in \{0,1\} \}$$

From the following theorem:

[m] No set is equinumerous with its power set.[/m]

and since the set $\{0,1\}^{\omega}$ is infinite, we have that the set $\{0,1\}^{\omega}$ is not equinumerous with $\omega$.
So this means that the powerset of $\{ 0,1 \}^{\omega}$ is $\omega$, right?But how do we deduce that?

Also at which point do we use the fact that $\{ 0,1 \}^{\omega}$ si infinite? :confused:
 
Physics news on Phys.org
Hi evinda,

To show that $\{0,1\}^\omega$ is uncountable, argue indirectly. Suppose, by way of contradiction, that $\{0,1\}^\omega$ is countable. Then the elements can be enumerated

$$x^{(1)}, x^{(2)}, x^{(3)},\ldots$$

Let $y$ be the element of $\{0,1\}^\omega$ such that $y_n = 1 - x_n^{(n)}$ for all $n\in \omega$, i.e., $y_n = 0$ if $x_n^{(n)} = 1$ and $y_n = 1$ if $x_n^{(n)} = 0$. Then $y$ does not belong to the list of $x$'s. Therefore, $\{0,1\}^\omega$ is uncountable.
 
Which function could we pick in order to show that $\{0,1\}^{\omega} \sim \mathcal{P} (\omega)$ ?
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Replies
2
Views
3K
Replies
14
Views
2K
Replies
18
Views
2K
Replies
4
Views
2K
Replies
28
Views
6K
Replies
15
Views
2K
Back
Top