MHB The set of all sets does not exist.

  • Thread starter Thread starter evinda
  • Start date Start date
  • Tags Tags
    Set Sets
Click For Summary
The discussion revolves around the proof that the set of all sets does not exist, primarily based on Russell's paradox. It begins by assuming the existence of a set of all sets, denoted as V, and defines a subset B containing elements that do not belong to themselves. The contradiction arises when it is shown that if B is a member of itself, it leads to a logical inconsistency, as B cannot both belong to and not belong to itself simultaneously. This contradiction implies that the initial assumption of the existence of V is incorrect, thereby proving that the set of all sets cannot exist. The conversation seeks clarification on the proof's steps and the implications of the contradiction found.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! (Wave)

Theorem (Russell's paradox is not a paradox in axiomatic set theory)

The set of all sets does not exist.

Proof

We suppose that the set of all sets exist, let $V$. So, for each set $x$, $x \in V$.
We define the type $\phi: \text{ a set does not belong to itself, so } x \notin x$.

So, from the Axiom schema of specification, the set $\{ x \in V: x \notin x \}$ exists.

Since $V$ is the set of all sets,

$$\{x \in V: x \notin x \} \subset V$$

So, $V'=\{ x: x \notin x \}$ is a set.

Therefore: $V' \in V' \leftrightarrow V' \notin V'$, contradiction.How do we know that $V'$ is a set? Also, could you explain me why, having found this contradiction, we have proven that the set of all sets do not exist? (Thinking)
 
Physics news on Phys.org
The proof starts with the assumption: suppose that the set of all sets exists. At the end the proof concludes that $V' \in V' \Leftrightarrow V' \notin V'$ which is a contradiction since a statement can not be equivalent with it's negation. Because of the contradiction the assumption (this is the only thing what was assumed) is incorrect hence the set of all sets does not exist.
 
We want to prove that the set of all sets do not exist.

We suppose that the set of all sets, let $V$, exists.
So, for each set $x, x \in V$.
We define the type $\phi: \text{ a set does not belong to itself , so } x \notin x$.

From the axiom schema of specification, we conclude that there is the set $B=\{ x \in V: x \notin x \}$

$$\forall y(y \in B) \Leftrightarrow y \notin y$$

How can we continue? (Thinking)
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
1
Views
1K
  • · Replies 132 ·
5
Replies
132
Views
20K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K