Undergrad The third central moment of a sum of two independent random variables

Click For Summary
When X and Y are independent random variables, it is true that E((X+Y)^3) equals E(X^3) + E(Y^3) under the assumption that both have an expectation of 0. This conclusion is derived from the linearity of expectation and the properties of independent random variables. The expansion of (X+Y)^3 allows for the application of linearity, leading to terms like E[X^2Y] and E[XY^2] being equal to zero due to the independence and zero expectations of X and Y. Thus, the central moment of the sum of two independent random variables can be simplified effectively. The discussion confirms the validity of this mathematical relationship.
Ad VanderVen
Messages
169
Reaction score
13
TL;DR
Is it true that in probability theory the third central moment of a sum of two independent random variables is equal to the sum of the third central moments of the two separate variables?
Is it true that when X and Y are independent,

E ({X+Y}3) = E (X3)+E(Y3)?
 
Last edited:
Physics news on Phys.org
This is just linearity of the expectation. You are assuming X and Y have expectation 0 and are independent. Develop (X+Y)^3, use linearity of E[.], then use independence and centrality to get E[X^2Y] = E[X^2]E[Y]=0 and E[XY^2] = E[X]E[Y^2]=0.
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K