The units digit of a triangular number iw ## 0, 1, 3, 5, 6 ##?

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    Units
AI Thread Summary
The discussion proves that the units digit of a triangular number can be 0, 1, 3, 5, 6, or 8. It begins by defining the nth triangular number as t_n = (n^2 + n)/2 for n ≥ 1. The proof analyzes n modulo 10, showing that the resulting values of t_n modulo 10 yield specific units digits. The conclusion confirms that only the digits 0, 1, 3, 5, 6, and 8 appear as units digits for triangular numbers. This establishes a clear understanding of the possible units digits for these numbers.
Math100
Messages
813
Reaction score
229
Homework Statement
Prove the following statement:
The units digit of a triangular number is ## 0, 1, 3, 5, 6 ##, or ## 8 ##.
Relevant Equations
None.
Proof:

Let ## t_{n} ## denote the ## nth ## triangular number such that ## t_{n}=\frac{n^{2}+n}{2} ## for ## n\geq 1 ##.
Then ## n\equiv 0, 1, 2, 3, 4, 5, 6, 7, 8 ##, or ## 9\pmod {10} ##.
Thus ## t_{n}\equiv 0, 1, 3, 6, 10, 15, 21, 28, 36 ##, or ## 45\pmod {10} ##.
Therefore, the units digit of a triangular number is ## 0, 1, 3, 5, 6 ##, or ## 8 ##.
 
Physics news on Phys.org
Math100 said:
Homework Statement:: Prove the following statement:
The units digit of a triangular number is ## 0, 1, 3, 5, 6 ##, or ## 8 ##.
Relevant Equations:: None.

Proof:

Let ## t_{n} ## denote the ## nth ## triangular number such that ## t_{n}=\frac{n^{2}+n}{2} ## for ## n\geq 1 ##.
Then ## n\equiv 0, 1, 2, 3, 4, 5, 6, 7, 8 ##, or ## 9\pmod {10} ##.
Thus ## t_{n}\equiv 0, 1, 3, 6, 10, 15, 21, 28, 36 ##, or ## 45\pmod {10} ##.
Therefore, the units digit of a triangular number is ## 0, 1, 3, 5, 6 ##, or ## 8 ##.
Right. I think it is time to proceed to the next paragraph now, something more challenging.
 
  • Love
  • Like
Likes Delta2 and Math100
Back
Top