I The Units of the Cosmological Constant: eV^2

Safinaz
Messages
255
Reaction score
8
TL;DR Summary
A question about the unit and the value of the cosmological constant
In natural units, it’s known that the unit of the cosmological constant is ##eV^2##.
I don‘t get why in this paper :

https://arxiv.org/pdf/2201.09016.pdf

page (1), it says the value of ##\Lambda \sim meV^4##, this means ##\Lambda \sim (10^6 ~ eV)^4 \sim 10^{24} eV^4 ##, shoud not the unit ##eV ^2 ## instead ?

 
Physics news on Phys.org
Because in natural units the dimension of the cosmological constant is energy^4 and it is not known that the dimension is energy^2.
 
Safinaz said:
Summary: A question about the unit and the value of the cosmological constant

In natural units, it’s known that the unit of the cosmological constant is ##eV^2##.
I don‘t get why in this paper :

https://arxiv.org/pdf/2201.09016.pdf

page (1), it says the value of ##\Lambda \sim meV^4##, this means ##\Lambda \sim (10^6 ~ eV)^4 \sim 10^{24} eV^4 ##, shoud not the unit ##eV ^2 ## instead ?

Safinaz said:
See for instance the discussion here:

https://www.quora.com/Why-is-the-cosmological-constant-without-units

Or this paper : https://arxiv.org/pdf/hep-th/0012253.pdf, equation (2)

They say the units of ##\Lambda## is ##eV^2 ## or equivalently in natural units ##cm^{-2} ## or ##sec^{-2}##
Ok, so the confusion is regarding ##\Lambda## vs ##\rho_\Lambda##. I was referring to ##\rho_\Lambda##, the energy density of the cosmological constant. The first paper you cite in the OP is discussing the scale of the energy density, the others discuss the constant appearing in front of the metric in the Einstein field equations. These differ by a constant ##8\pi G## and ##G## has dimensions energy^-2 in natural units.
 
  • Like
Likes Ibix and Safinaz
In such cases it's always good to go back to SI units first. From the Einstein equations you read off that ##\Lambda## has the same units as ##[G E]/(V^4 L^3)## (##G## gravitational constant, ##V## dimension of velocity, ##L## dimension of length). The gravitational constant itself has the dimension of ##[E] L/M^2## and thus ##[\Lambda]=1/L^2##. In "natural units" with ##\hbar=c=1## that means it dimension ##\text{eV}^2##.

A different way to see it is to realize that ##\Lambda c^4/(8 \pi G)=u_{\Lambda}## is an energy density (density of "dark energy"). Often you see also ##\rho_{\Lambda}=\Lambda c^2/(8 \pi G)##, which is the corresponding "mass density", i.e., ##\rho_{\Lambda}=u_{\Lambda}/c^2##.
 
  • Like
  • Informative
Likes Safinaz, Bandersnatch, Ibix and 2 others
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top