The Units of the Cosmological Constant: eV^2

Click For Summary
SUMMARY

The cosmological constant, denoted as ##\Lambda##, is correctly expressed in natural units as having units of ##eV^2##. The confusion arises from the distinction between ##\Lambda## and ##\rho_\Lambda##, the energy density associated with the cosmological constant. While some papers may refer to ##\Lambda \sim meV^4##, this pertains to energy density rather than the cosmological constant itself. The gravitational constant ##G##, which has dimensions of energy^-2 in natural units, plays a crucial role in this distinction, confirming that ##[\Lambda]=1/L^2## translates to ##\Lambda## having units of ##eV^2##.

PREREQUISITES
  • Understanding of natural units in physics
  • Familiarity with the cosmological constant and its role in cosmology
  • Knowledge of the Einstein field equations
  • Basic grasp of energy density concepts
NEXT STEPS
  • Review the implications of the cosmological constant in the context of dark energy
  • Study the derivation of the Einstein field equations and their relation to ##\Lambda##
  • Explore the differences between energy density and the cosmological constant in various cosmological models
  • Investigate the role of the gravitational constant ##G## in natural units and its impact on cosmological equations
USEFUL FOR

Physicists, cosmologists, and students studying theoretical physics who are looking to deepen their understanding of the cosmological constant and its implications in modern cosmology.

Safinaz
Messages
255
Reaction score
8
TL;DR
A question about the unit and the value of the cosmological constant
In natural units, it’s known that the unit of the cosmological constant is ##eV^2##.
I don‘t get why in this paper :

https://arxiv.org/pdf/2201.09016.pdf

page (1), it says the value of ##\Lambda \sim meV^4##, this means ##\Lambda \sim (10^6 ~ eV)^4 \sim 10^{24} eV^4 ##, shoud not the unit ##eV ^2 ## instead ?

 
Physics news on Phys.org
Because in natural units the dimension of the cosmological constant is energy^4 and it is not known that the dimension is energy^2.
 
Safinaz said:
Summary: A question about the unit and the value of the cosmological constant

In natural units, it’s known that the unit of the cosmological constant is ##eV^2##.
I don‘t get why in this paper :

https://arxiv.org/pdf/2201.09016.pdf

page (1), it says the value of ##\Lambda \sim meV^4##, this means ##\Lambda \sim (10^6 ~ eV)^4 \sim 10^{24} eV^4 ##, shoud not the unit ##eV ^2 ## instead ?

Safinaz said:
See for instance the discussion here:

https://www.quora.com/Why-is-the-cosmological-constant-without-units

Or this paper : https://arxiv.org/pdf/hep-th/0012253.pdf, equation (2)

They say the units of ##\Lambda## is ##eV^2 ## or equivalently in natural units ##cm^{-2} ## or ##sec^{-2}##
Ok, so the confusion is regarding ##\Lambda## vs ##\rho_\Lambda##. I was referring to ##\rho_\Lambda##, the energy density of the cosmological constant. The first paper you cite in the OP is discussing the scale of the energy density, the others discuss the constant appearing in front of the metric in the Einstein field equations. These differ by a constant ##8\pi G## and ##G## has dimensions energy^-2 in natural units.
 
  • Like
Likes   Reactions: Ibix and Safinaz
In such cases it's always good to go back to SI units first. From the Einstein equations you read off that ##\Lambda## has the same units as ##[G E]/(V^4 L^3)## (##G## gravitational constant, ##V## dimension of velocity, ##L## dimension of length). The gravitational constant itself has the dimension of ##[E] L/M^2## and thus ##[\Lambda]=1/L^2##. In "natural units" with ##\hbar=c=1## that means it dimension ##\text{eV}^2##.

A different way to see it is to realize that ##\Lambda c^4/(8 \pi G)=u_{\Lambda}## is an energy density (density of "dark energy"). Often you see also ##\rho_{\Lambda}=\Lambda c^2/(8 \pi G)##, which is the corresponding "mass density", i.e., ##\rho_{\Lambda}=u_{\Lambda}/c^2##.
 
  • Like
  • Informative
Likes   Reactions: Safinaz, Bandersnatch, Ibix and 2 others

Similar threads

  • · Replies 8 ·
Replies
8
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 38 ·
2
Replies
38
Views
5K