MHB There are a,b>=0, such that |f(x)|<= ax+b

  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
The discussion centers on proving that for a uniformly continuous function f defined on [0, +∞), there exist non-negative constants a and b such that |f(x)| ≤ ax + b for all x ≥ 0. Participants explore the implications of uniform continuity, noting that it ensures boundedness of the function's growth. A proof strategy involves establishing a relationship between the function's values over intervals and deriving suitable constants. The conversation also touches on examples of uniformly continuous functions and clarifies misconceptions about differentiability and uniform continuity. Overall, the thread emphasizes the connection between uniform continuity and the existence of linear bounds on the function.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hey! (Blush)

I have a question..I am given the following exercise:
Let $f:[0,+\infty) \to \mathbb{R}$ uniformly continuous at $[0,+\infty)$.Prove that there are $a,b \geq 0$ such that $|f(x)| \leq ax+b , \forall x \geq 0$.
That's what I did so far:
$f:[0,+\infty) \to \mathbb{R}$ is uniformly continuous at $[0,+\infty)$.
So: $\forall \epsilon>0 \exists \delta>0 $ such that $\forall x,y \in [0,+\infty)$ with $|x-y|<\delta \Rightarrow |f(x)-f(y)|<\epsilon$..
But,how can I continue to show that there are $a,b \geq 0$ such that $|f(x)| \leq ax+b , \forall x \geq 0$?? (Thinking)
 
Physics news on Phys.org
Let $b=|f(0)|$. Suppose that for $\epsilon=1$ the corresponding $\delta$ is $0.1$. This means that from $0$ to $0.1$ the function $|f(x)|$ can grow at most by $1$. By the next $0.1$, $|f(x)|$ can grow at most by another $1$, and so on. Can you find a suitable $a$ in this case? Drawing a sketch may help.
 
evinda said:
Hey! (Blush)

I have a question..I am given the following exercise:
Let $f:[0,+\infty) \to \mathbb{R}$ uniformly continuous at $[0,+\infty)$.Prove that there are $a,b \geq 0$ such that $|f(x)| \leq ax+b , \forall x \geq 0$.
That's what I did so far:
$f:[0,+\infty) \to \mathbb{R}$ is uniformly continuous at $[0,+\infty)$.
So: $\forall \epsilon>0 \exists \delta>0 $ such that $\forall x,y \in [0,+\infty)$ with $|x-y|<\delta \Rightarrow |f(x)-f(y)|<\epsilon$..
But,how can I continue to show that there are $a,b \geq 0$ such that $|f(x)| \leq ax+b , \forall x \geq 0$?? (Thinking)

If f(*) is uniformly continuous in $[a, + \infty)$ , then its derivative is bounded in the same inteval, i.e. it exists a constant M > 0 such that for any x in $[a, + \infty)$ is $\displaystyle |f^{\ '} (x)| > M$. In this case You can choose two constant a and b with b > M such that is $\displaystyle |a + b\ x|> |f(x)|$ for any x in $[a, + \infty)$...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
If f(*) is uniformly continuous in $[a, + \infty)$ , then its derivative is bounded in the same inteval
A function may be uniformly continuous without being differentiable: see StackExchange.
 
Actually what follows, it's the converse:

Let $f:A\subset\mathbb R\to\mathbb R$ be with bounded derivative then $f$ is Lipschitz on $A,$ hence, uniformly continuous.
 
Now, more generally:

Let $f:\mathbb R\to\mathbb R$ be a uniform continuous function, then exist $a,b>0$ such that $|f(x)|\le a|x|+b.$

Let $\delta > 0$ be such that $|x-y|\le \delta \implies |f(x)-f(y)| < 1$.

Claim: $|f(x)| \le \frac{2}{\delta}|x| +|f(0)|$ for all $x$.

Proof: WLOG, $x>0,$ so $x\in [n \delta, (n+1) \delta)$ for some $n\in \{0,1,\dots\}$. Write $f(x)$ as a telescoping sum using multiples of $\delta,$ then slap on absolute values. We get \[|f(x)| \le |f(x) -f(n \delta)| +|f(n \delta)-f((n-1) \delta)| + \cdots + |f( \delta)-f(0)|+ |f(0)|\]
So this implies that $|f(x)|\le 1+n + |f(0)|.$ If $n>0,$ the latter expresion can be rewritten as $\frac{(n+1)}{n\delta}n\delta + |f(0)| \le \frac{2}{\delta}|x| + |f(0)|.$ If $n=0,$ the claim holds.

So the case here, it's actually $|f(x)|\le ax+b$ since $x\in[0,\infty).$
 
I'm not a mathematician and one consequence of that is that I don't consider any type of 'pathological function', the fate of which should be to be closed for life in a 'hospital for incurables' with benefit for all us! :cool:...

Hoping to be absolved for that, since there are uniformly continuous functions 'nowhere differentiable', let's try to find a more general solution of thye proposed question. It is not limitative to suppose f(*) a positive non decreasing uniformly continuous function in $[0, + \infty)$ and we indicate with $\Phi(*)$ the set of such functions. The following propositions are easy to be demonstrated...

a) if $f(*) \in \Phi(*)$ and a>0 then $a\ f(*) \in \Phi(*)$...

b) if $f(*) \in \Phi(*)$ and $g(*) \in \Phi(*)$ then $f(*) + g(*) \in \Phi(*)$...

A little more complex but feasible is to demonstrate the following theorem...

c) the function $f(x) = x^{a}$ is uniformly continuous in $[0, + \infty)$ if and only if $0 \le a \le 1$

Consequence of a), b) and c) is that, given a>0 and b>0, $g(x) = a x + b \in \Phi(*)$ and because value of a and b for which $g(*) = f(*) + h(*)$ being $h(*) \in \Phi(*)$ exist, the OP has been demonstrated. If necessary the demonstration of c) will be supplied...

Kind regards

$\chi$ $\sigma$
 
chisigma said:
It is not limitative to suppose f(*) a positive non decreasing uniformly continuous function in $[0, + \infty)$ and we indicate with $\Phi(*)$ the set of such functions. The following propositions are easy to be demonstrated...

a) if $f(*) \in \Phi(*)$ and a>0 then $a\ f(*) \in \Phi(*)$...

b) if $f(*) \in \Phi(*)$ and $g(*) \in \Phi(*)$ then $f(*) + g(*) \in \Phi(*)$...

A little more complex but feasible is to demonstrate the following theorem...

c) the function $f(x) = x^{a}$ is uniformly continuous in $[0, + \infty)$ if and only if $0 \le a \le 1$
Unfortunately the function $f(x) = x^\alpha$ is not uniformly continuous on $[0,\infty)$ for $\alpha<1$. In fact, $f'(x) = \alpha x^{\alpha-1}$, which becomes unbounded as $x\to0$. A function with an unbounded derivative can never be uniformly continuous. So the only value of $\alpha$ for which the function is uniformly continuous on $[0,\infty)$ is $\alpha=1.$

Examples of 'non-pathological' functions in the set $\Phi(*)$ include $(x+1)^\alpha$ (for $0\leqslant \alpha\leqslant 1$), $\arctan x$ and $\tanh x$.

*Edit* See retraction below! I was confusing uniform continuity with Lipschitz continuity when I wrote the above nonsense.
 
Last edited:
Opalg said:
Unfortunately the function $f(x) = x^\alpha$ is not uniformly continuous on $[0,\infty)$ for $\alpha<1$. In fact, $f'(x) = \alpha x^{\alpha-1}$, which becomes unbounded as $x\to0$. A function with an unbounded derivative can never be uniformly continuous. So the only value of $\alpha$ for which the function is uniformly continuous on $[0,\infty)$ is $\alpha=1.$

Examples of 'non-pathological' functions in the set $\Phi(*)$ include $(x+1)^\alpha$ (for $0\leqslant \alpha\leqslant 1$), $\arctan x$ and $\tanh x$.

I have to confess to be a little embarassed at this point, because I remember that a 'classical' example of uniformly continuous function on $[0, + \infty)$ is $f(x)= \sqrt{x}$. Among the [numerous] posts on Web about this argument there is the following...

Show that sqrt(x) is uniformly continuous on [0,infinity) - Math Help Forum

Kind regards

$\chi$ $\sigma$
 
  • #10
chisigma said:
I have to confess to be a little embarassed at this point, because I remember that a 'classical' example of uniformly continuous function on $[0, + \infty)$ is $f(x)= \sqrt{x}$. Among the [numerous] posts on Web about this argument there is the following...

Show that sqrt(x) is uniformly continuous on [0,infinity) - Math Help Forum

Kind regards

$\chi$ $\sigma$
Now it's my turn to be embarrassed, because of course $x^\alpha$ is uniformly continuous on $[0,\infty)$ when $0\leqslant \alpha \leqslant 1.$ I must be getting old. (Worried)
 
  • #11
Opalg said:
Now it's my turn to be embarrassed, because of course $x^\alpha$ is uniformly continuous on $[0,\infty)$ when $0\leqslant \alpha \leqslant 1.$ I must be getting old. (Worried)

... not only You! (Worried)...

Kind regards

$\chi$ $\sigma$
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K