MHB Thingsto Do's question at Yahoo Answers regarding a first order homogeneous IVP

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Solve the following Initial Value Problem Help?

Solve the following Initial Value Problem Help #2

View attachment 1326

I have posted a link there to this topic so the OP can see my work.
 

Attachments

  • 5VuXAU2.png
    5VuXAU2.png
    4.2 KB · Views: 101
Mathematics news on Phys.org
Hello Thingsto Do,

I would first write the ODE in the form $$\frac{dy}{dx}=f(x,y)$$:

$$\frac{dy}{dx}=\frac{104xy-y^2}{x^2}=104\frac{y}{x}-\left(\frac{y}{x} \right)^2$$

Using the substitution $$u=\frac{y}{x}\,\therefore\,\frac{dy}{dx}=u+x\frac{du}{dx}$$ we may write:

$$u+x\frac{du}{dx}=104u-u^2$$

$$x\frac{du}{dx}=103u-u^2$$

Separating variables, we have:

$$\frac{1}{103u-u^2}\,du=\frac{1}{x}\,dx$$

Using the Heaviside cover-up method on the left side, we may obtain the partial fraction decomposition. Factoring the denominator, we may then assume it takes the following form:

$$\frac{1}{u(103-u)}=\frac{A}{u}+\frac{B}{103-u}$$

Covering up the factor $u$ in the denominator of the left side, and evaluating what is left for $u=0$ we obtain:

$$A=\frac{1}{103}$$

Covering up the factor $103-u$ in the denominator of the left side, and evaluating what is left for $u=103$ we obtain:

$$B=\frac{1}{103}$$

Hence:

$$\frac{1}{u(103-u)}=\frac{1}{103}\left(\frac{1}{u}+\frac{1}{103-u} \right)$$

And so the ODE becomes:

$$\frac{1}{103}\left(\frac{1}{u}-\frac{1}{u-103} \right)\,du=\frac{1}{x}\,dx$$

Integrating, we have:

$$\frac{1}{103}\int\left(\frac{1}{u}-\frac{1}{u-103} \right)\,du=\int\frac{1}{x}\,dx$$

$$\ln\left|\frac{u}{u-103} \right|=103\ln\left|Cx \right|=\ln\left|Cx^{103} \right|$$

$$\frac{u}{u-103}=Cx^{103}$$

Solve for $u$:

$$u=\frac{103Cx^{103}}{Cx^{103}-1}$$

Back-substitute for $u$:

$$\frac{y}{x}=\frac{103Cx^{103}}{Cx^{103}-1}$$

Hence:

$$y(x)=\frac{103Cx^{104}}{Cx^{103}-1}$$

Use the initial values to determine the parameter $C$:

$$y(1)=\frac{103C}{C-1}=2\,\therefore\,C=-\frac{2}{101}$$

Thus, the solution satisfying the IVP is:

$$y(x)=\frac{103\left(-\frac{2}{101} \right)x^{104}}{\left(-\frac{2}{101} \right)x^{103}-1}=\frac{206x^{104}}{2x^{103}+101}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top