Time independent perturbation (Quantum Mechanics)

Click For Summary
SUMMARY

The discussion focuses on calculating energy corrections using time-independent perturbation theory in quantum mechanics, specifically for a Hamiltonian matrix involving states A and B. The Hamiltonian is expressed as a sum of a diagonal matrix and a perturbation matrix, leading to the derived energy corrections for state A and the realization that corrections exist for state B as well. The user initially miscalculated the corrections for state B but later corrected this by applying the perturbation method for the degenerate case to second order, confirming the final energy expressions for both states.

PREREQUISITES
  • Understanding of quantum mechanics and perturbation theory
  • Familiarity with Hamiltonian matrices and eigenvalue problems
  • Knowledge of Taylor series expansions in mathematical physics
  • Experience with matrix diagonalization techniques
NEXT STEPS
  • Study the application of time-independent perturbation theory in quantum mechanics
  • Learn about degenerate perturbation theory and its implications
  • Explore Taylor series expansions and their use in quantum corrections
  • Investigate matrix diagonalization methods for complex Hamiltonians
USEFUL FOR

Quantum mechanics students, physicists working on perturbation theory, and researchers involved in energy level calculations in quantum systems.

Telemachus
Messages
820
Reaction score
30
Hi there. I have to find the energy corrections through the perturbation method, and then give the exact result for the hamiltonian:

##H= \begin{pmatrix}
E_A & \epsilon & \epsilon & \epsilon \\
\epsilon & E_B & 0 & 0 \\
\epsilon & 0 & E_B & 0\\
\epsilon & 0 & 0 & E_B \\ \end{pmatrix} ##

So I've got:

##H=H_0+W= \begin{pmatrix} E_A & 0 & 0 & 0 \\ 0 & E_B& 0 & 0 \\ 0 & 0 & E_B & 0\\ 0 & 0 & 0 & E_B \\ \end{pmatrix} + \begin{pmatrix}0 & \epsilon & \epsilon & \epsilon \\ \epsilon & 0 & 0 & 0 \\ \epsilon & 0 & 0 & 0\\ \epsilon & 0 & 0 & 0 \\ \end{pmatrix} ##

So, perturbation theory gives for the non degenerate energy:
##E_A(\epsilon)=E_A+ \left < A \right | W \left | A \right > + \sum_{i=1}^3 \displaystyle \frac{| \left < B_i \right | W \left | A \right > |^2}{E_A-E_B}=E_A+\frac{3\epsilon^2}{E_A-E_B} ##

Now, the matrix ##\hat W^n## corresponding to ##W## inside the eigensubspace generated by the B states gives me zero:
##\hat W^n=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0& 0 \\ 0 & 0 & 0 \\ \end{pmatrix}##

So I think there'll be no corrections in the ##E_B## energies. I'm not sure if this is right.

On the other side, I've tried to diagonalize the Hamiltonian, to get the exact values for the energies. But I've found some trouble. Basically I didn't get the energy that I've found before, ##E_A(\epsilon)## as one of the roots for the determinant of the Hamiltonian. I don't know if I've made a mistake at any step, or if I'm not getting this right.

This is what I have:

##H= \begin{pmatrix}
E_A & \epsilon & \epsilon & \epsilon \\
\epsilon & E_B & 0 & 0 \\
\epsilon & 0 & E_B & 0\\
\epsilon & 0 & 0 & E_B \\ \end{pmatrix} ##

So when I try to diagonalize this Hamiltonian, I get to this secular equation:

##-\epsilon^2(E_B-E_n(\epsilon))^2+(E_B-E_n(\epsilon))[(E_A-E_n(\epsilon))(E_B-E_n(\epsilon))^2-2\epsilon^2(E_B-E_n(\epsilon))]= \\ (E_B-E_n(\epsilon))^2[3\epsilon^2+(E_B-E_n(\epsilon))(E_A-E_n(\epsilon))]=0##

So I have a double root ##E_{1,2}(\epsilon)=E_B##, and then I solve the quadratic equation:

##3\epsilon^2+(E_B-E_n(\epsilon))(E_A-E_n(\epsilon))=3\epsilon^2+E_BE_A-En(\epsilon)(E_B+E_A)+E(\epsilon)_n^2=0 \: \: \displaystyle \left ( 1 \right )##

Then I get: ##E_{3,4}(\epsilon)=\displaystyle\frac{E_A+E_B±\sqrt{E_B^2+E_A^2-2E_AE_B -12\epsilon^2} }{2}=E_{3,4}(\epsilon)=\displaystyle\frac{E_A+E_B±\sqrt{(E_B-E_A)^2-12\epsilon^2} }{2}##

And this doesn't look like what I've found when using time independent perturbation theory.

Help please :)
 
Last edited:
Physics news on Phys.org
After thinking of this for a while I came to thought that perhaps I should try expanding the square root on ##E_{3,4}## in Taylor series. I'll try with that.

Any help, or suggestion will be appreciated.

Alright, I've found ##E_A## through the taylor expansion. And the correction for one of the ##E_B## which tells me that what I did before was wrong, when assuming there were no corrections on any ##E_B##, now I need to know how to get this right through the perturbation method. I usually get this through the diagonalization of the submatrix corresponding to the eigensubspace spanned by the degenerate states. But in this case in which that matrix is zero I'm not sure what I have to do. I'll see what I can do.

Ok, it's done. It was pretty obvious, I had to use perturbation method for degenerate case to second order in the energies.

From ##\displaystyle \left ( 1 \right )## its clear: ##E_{1,2}=E_B##

Also:
##If \: \epsilon<<E_A:
\sqrt{(E_B-E_A)^2-12\epsilon^2}\approx E_B-E_A-\frac{6\epsilon^2}{E_B-E_A}##Then
##E_{3}(\epsilon)=E_B-\frac{3\epsilon^2}{E_B-E_A}, \: \: E_{4}(\epsilon)=E_A+\frac{3\epsilon^2}{E_A-E_B}##
 
Last edited:

Similar threads

Replies
1
Views
1K
Replies
4
Views
738
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K