hokhani
- 552
- 15
- TL;DR Summary
- How can ##\psi^*(x,-t)## be a solution of the Schrodinger equation with specific initial conditions?
In the solution of Schrodinger equation, ##H\psi =i\hbar \frac{\partial \psi}{\partial t}##, the solution ##\psi(x,t)## depends on the initial condition at ##t=t_0##. It is mentioned in the literatures that if ##H=H^*## then ##\psi^*(x,-t)## is another solution. However, ##\psi^*(x,-t)## is not consistent with the initial condition. In other words, ##\psi^*(x,-t_0) \ne \psi(x,t_0) ##! Any help is appreciated.