MHB Topology Munkres Chapter 1 exercise 2 b and c- Set theory equivalent statements

cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Every one,

I am having some difficulties on exercise 2b and 2c from Topology 2nd ed by J. Munkres . Here are the directions:
determine which of the following states are true for all sets $A$, $B$, $C$, and $D$. If a double implication fails, determine whether one or the other one of the possible implication holds. If an equality fails, determine whether the statement becomes true if the "equal" symbol is replaced by one or the other of the inclusion symbols $\subset$ or $\supset$.

Problem 2b and 2c, respectively:

b. $A\subset B$ or $A\subset C \iff A \subset (B \cup C)$
c. $A\subset B$ and $A\subset C \iff A \subset (B\cap C)$

My attempt
Let $A=\left\{1,2,3,4,5\right\}$, $B=\left\{3,4,5\right\}$ and $C=\left\{1,2\right\}$.
b. I believe it to be true in $\implies$ and true in $\Longleftarrow$.
c. I believe it to be true in $\Longleftarrow$ and false in $\implies$.

Any counterexample can help me figure out why these are correct or incorrect.

thanks,
Cbarker1
 
Physics news on Phys.org
Hi Cbarker1,

In b., take $A$ to be the rationals, $B$ to be the interval $(-\infty, 0]$ and $C$ to be the interval $(0, \infty)$. Then $B \cup C$ is the reals so that $A \subset B \cup C$, but neither $A\subset B$ nor $A\subset C$. In c., if $a\in A$, then since $A \subset B$, $a\in B$; similarly, as $A\subset C$, $a\in C$. Hence $a\in B\cap C$. Since $a$ was arbitrary, one concludes $A\subset B\cap C$.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top