Transformations with the Mukhanov variable (Cosmology)

  • Thread starter Thread starter ergospherical
  • Start date Start date
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Homework Statement
See below
Relevant Equations
N/A
I've been going around in circles for a while. We have a parameter ##z##, defined through$$z^2 = 2a^2 \epsilon$$where ##a## is the scale factor and ##\epsilon## is the slow-roll parameter. Considering the action$$S = \frac{1}{2} \int d\tau d^3 x \ z^2 \left[(\mathcal{R}')^2 - (\partial_i \mathcal{R})^2 \right]$$with ##\mathcal{R}## the comoving curvature perturbation. We want to write this in terms of a new 'Mukhanov' variable ##v \equiv z\mathcal{R}##. This is where the confusion starts - specifically with ##\mathcal{R}'##. You can find easily that$$\mathcal{R}' = \frac{v'}{z} - \frac{z' v}{z^2}$$We are looking to arrive at $$S = \frac{1}{2} \int d\tau d^3 x \ \left[(v')^2 - (\partial_i v)^2 + \frac{z''}{z}v^2 \right]$$It looks like I need another equation, to get from ##z'##s to ##z''##s. I've previously showed that ##\tfrac{z''}{z} = \mathcal{H}^2(2-\epsilon + \tfrac{3}{2}\eta)##, just from the definition of ##z## and taking some care to keep only first order perturbations, but can't see whether this is useful.
 
Physics news on Phys.org
Is it taken from some book or paper this question of yours?
 
What is ##\partial_i R##?
Derivative w.r.t what?
 
##\partial_i = \partial/\partial x^i##
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top