Transformations with the Mukhanov variable (Cosmology)

  • Thread starter Thread starter ergospherical
  • Start date Start date
AI Thread Summary
The discussion focuses on the transformation of the action in cosmology using the Mukhanov variable, defined as v = zR, where z is related to the scale factor and slow-roll parameter. The confusion arises in expressing the comoving curvature perturbation's derivative, R', in terms of the new variable. The goal is to reformulate the action to include the second derivative of z, z'', which is derived from the definition of z and first-order perturbations. The participants explore the necessary equations to connect z' and z'' while clarifying the meaning of the spatial derivative operator. The conversation emphasizes the mathematical intricacies involved in this transformation process.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Homework Statement
See below
Relevant Equations
N/A
I've been going around in circles for a while. We have a parameter ##z##, defined through$$z^2 = 2a^2 \epsilon$$where ##a## is the scale factor and ##\epsilon## is the slow-roll parameter. Considering the action$$S = \frac{1}{2} \int d\tau d^3 x \ z^2 \left[(\mathcal{R}')^2 - (\partial_i \mathcal{R})^2 \right]$$with ##\mathcal{R}## the comoving curvature perturbation. We want to write this in terms of a new 'Mukhanov' variable ##v \equiv z\mathcal{R}##. This is where the confusion starts - specifically with ##\mathcal{R}'##. You can find easily that$$\mathcal{R}' = \frac{v'}{z} - \frac{z' v}{z^2}$$We are looking to arrive at $$S = \frac{1}{2} \int d\tau d^3 x \ \left[(v')^2 - (\partial_i v)^2 + \frac{z''}{z}v^2 \right]$$It looks like I need another equation, to get from ##z'##s to ##z''##s. I've previously showed that ##\tfrac{z''}{z} = \mathcal{H}^2(2-\epsilon + \tfrac{3}{2}\eta)##, just from the definition of ##z## and taking some care to keep only first order perturbations, but can't see whether this is useful.
 
Physics news on Phys.org
Is it taken from some book or paper this question of yours?
 
What is ##\partial_i R##?
Derivative w.r.t what?
 
##\partial_i = \partial/\partial x^i##
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top