Transformations with the Mukhanov variable (Cosmology)

  • Thread starter Thread starter ergospherical
  • Start date Start date
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Homework Statement
See below
Relevant Equations
N/A
I've been going around in circles for a while. We have a parameter ##z##, defined through$$z^2 = 2a^2 \epsilon$$where ##a## is the scale factor and ##\epsilon## is the slow-roll parameter. Considering the action$$S = \frac{1}{2} \int d\tau d^3 x \ z^2 \left[(\mathcal{R}')^2 - (\partial_i \mathcal{R})^2 \right]$$with ##\mathcal{R}## the comoving curvature perturbation. We want to write this in terms of a new 'Mukhanov' variable ##v \equiv z\mathcal{R}##. This is where the confusion starts - specifically with ##\mathcal{R}'##. You can find easily that$$\mathcal{R}' = \frac{v'}{z} - \frac{z' v}{z^2}$$We are looking to arrive at $$S = \frac{1}{2} \int d\tau d^3 x \ \left[(v')^2 - (\partial_i v)^2 + \frac{z''}{z}v^2 \right]$$It looks like I need another equation, to get from ##z'##s to ##z''##s. I've previously showed that ##\tfrac{z''}{z} = \mathcal{H}^2(2-\epsilon + \tfrac{3}{2}\eta)##, just from the definition of ##z## and taking some care to keep only first order perturbations, but can't see whether this is useful.
 
Physics news on Phys.org
Is it taken from some book or paper this question of yours?
 
What is ##\partial_i R##?
Derivative w.r.t what?
 
##\partial_i = \partial/\partial x^i##
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top