MHB Translating to algebraic expressions

  • Thread starter Thread starter NotaMathPerson
  • Start date Start date
  • Tags Tags
    Expressions
NotaMathPerson
Messages
82
Reaction score
0
I am not able to express it symbolically I need your assistance. Thanks!

A room is $p$ ft. Long and $x$ yards in width; how many yards of carpet two ft. Wide will be required for the floor?
 
Mathematics news on Phys.org
One yard is 3 feet, so each yard of carpet covers 6 square feet. Your total area is $\dfrac{px}{3}$ square feet.

So if $y$ is the number of yards of carpet, you need to solve for $y$ in:

$6y = \dfrac{px}{3}$, to get the minimum needed (it could be more if neither $p$ nor $\dfrac{x}{3}$ is evenly divisible by $2$ or $3$).
 
Deveno said:
One yard is 3 feet, so each yard of carpet covers 6 square feet. Your total area is $\dfrac{px}{3}$ square feet.

So if $y$ is the number of yards of carpet, you need to solve for $y$ in:

$6y = \dfrac{px}{3}$, to get the minimum needed (it could be more if neither $p$ nor $\dfrac{x}{3}$ is evenly divisible by $2$ or $3$).

The answer in my book is
$\frac{px}{2}$

Why is that?
 
The area $A_R$ of the room in square yards is:

$$A_R=\frac{px}{3}$$

For a length $\ell$ of carpet in yards, its area $A_C$ in square yards is:

$$A_C=\frac{2\ell}{3}$$

Equating the two areas:

$$\frac{px}{3}=\frac{2\ell}{3}$$

Solve for $\ell$:

$$\ell=\frac{px}{2}$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top