MHB Triangle and logarithm problem

Click For Summary
The problem involves determining when the logarithmic expression z is real based on the sides of triangle ABC. The participants agree that the argument of the logarithm must be positive, leading to the conclusion that the expression simplifies to a condition involving the triangle's sides. It is established that for sides a, b, and c of a triangle, the inequalities imply that the expression inside the logarithm is always positive, ensuring z is real. Ultimately, the symmetry of the problem indicates that none of the provided options A, B, or C are valid, leading to the conclusion that the correct answer is D.
Saitama
Messages
4,244
Reaction score
93
Problem:
Given that $a,b$ and $c$ are the sides of $\Delta ABC$ such that $$z=\log_{2^a+2^{-a}} \left(4(ab+bc+ca)-(a+b+c)^2\right)$$ then $z$ has a real value if and only if

A)a=b=2c
B)3a=2b=c
C)a-b=3c
D)None of these

Attempt:
I am not sure where to start with this kind of problem. I wrote the expression inside the logarithm as follows:
$$-(a^2+b^2+c^2-2(ab+bc+ca))$$
Since, anything inside the logarithm must be greater than zero, I have
$$a^2+b^2+c^2-2(ab+bc+ca)<0 \Rightarrow a^2+b^2+c^2<2(ab+bc+ca)$$
But $a^2+b^2+c^2 >ab+bc+ca$, I get $ab+bc+ca>0$. I doubt this is going to help.

Any help is appreciated. Thanks!
 
Mathematics news on Phys.org
Pranav said:
Problem:
Given that $a,b$ and $c$ are the sides of $\Delta ABC$ such that $$z=\log_{2^a+2^{-a}} \left(4(ab+bc+ca)-(a+b+c)^2\right)$$ then $z$ has a real value if and only if

A)a=b=2c
B)3a=2b=c
C)a-b=3c
D)None of these

Attempt:
I am not sure where to start with this kind of problem. I wrote the expression inside the logarithm as follows:
$$-(a^2+b^2+c^2-2(ab+bc+ca))$$
Since, anything inside the logarithm must be greater than zero,

Hey Pranav! :)

I agree that the argument to the logarithm should be greater than zero.
From that point on the problem is symmetric in $a,b,c$.
That is, they can be swapped around giving the same expression.
In other words, none of the answers A, B, or C fit.
Therefore the answer must be D.

I have
$$a^2+b^2+c^2-2(ab+bc+ca)<0 \Rightarrow a^2+b^2+c^2<2(ab+bc+ca)$$
But $a^2+b^2+c^2 >ab+bc+ca$, I get $ab+bc+ca>0$. I doubt this is going to help.

Any help is appreciated. Thanks!

I believe that should be a $\ge$ sign.

Anyway, since $a,b,c$ are the sides of a triangle (which you did not use yet), you can conclude that this is always the case.
 
If $a,b,c$ are the sides of a triangle then $b+c > a$, $c+a>b$ and $a+b>c$. Multiply the first of those inequalities by $a$, the second by $b$ and the third by $c$, and add. That gives $2(bc+ca+ab) > a^2+b^2+c^2.$ Therefore $4(bc+ca+ab) > a^2+b^2+c^2 + 2(bc+ca+ab) = (a+b+c)^2.$ So $4(bc+ca+ab) - (a+b+c)^2$ is always positive and therefore always has a real logarithm (to any base).
 
I like Serena said:
That is, they can be swapped around giving the same expression.

Hi ILS! :)

I understand the above statement but how do you conclude the following:
In other words, none of the answers A, B, or C fit.
:confused:

Opalg said:
If $a,b,c$ are the sides of a triangle then $b+c > a$, $c+a>b$ and $a+b>c$. Multiply the first of those inequalities by $a$, the second by $b$ and the third by $c$, and add. That gives $2(bc+ca+ab) > a^2+b^2+c^2.$ Therefore $4(bc+ca+ab) > a^2+b^2+c^2 + 2(bc+ca+ab) = (a+b+c)^2.$ So $4(bc+ca+ab) - (a+b+c)^2$ is always positive and therefore always has a real logarithm (to any base).

Thanks a lot Opalg, very nicely done. :)
 
Pranav said:
Hi ILS! :)

I understand the above statement but how do you conclude the following:
In other words, none of the answers A, B, or C fit.

Since the problem is symmetric in $a, b, c$ the correct answer will also have to be symmetric in $a, b, c$. Neither of the answers A, B, or C are.
 
I like Serena said:
Since the problem is symmetric in $a, b, c$ the correct answer will also have to be symmetric in $a, b, c$. Neither of the answers A, B, or C are.

I see it now, thanks ILS! :)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
7
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K