Triangle and logarithm problem

  • Context: MHB 
  • Thread starter Thread starter Saitama
  • Start date Start date
  • Tags Tags
    Logarithm Triangle
Click For Summary
SUMMARY

The discussion centers on determining the conditions under which the logarithmic expression $$z=\log_{2^a+2^{-a}} \left(4(ab+bc+ca)-(a+b+c)^2\right)$$ yields a real value for the sides of triangle $\Delta ABC$. The consensus is that the expression inside the logarithm must be positive, leading to the conclusion that the correct answer is D) None of these. This is justified by the symmetry of the problem and the properties of triangle inequalities, which ensure that the expression is always positive.

PREREQUISITES
  • Understanding of logarithmic functions and their properties
  • Familiarity with triangle inequalities
  • Knowledge of symmetric expressions in algebra
  • Basic concepts of triangle geometry
NEXT STEPS
  • Study the properties of logarithmic functions, focusing on conditions for real values
  • Explore triangle inequalities and their implications in geometric problems
  • Learn about symmetric functions and their applications in algebra
  • Investigate advanced topics in triangle geometry, such as Heron's formula
USEFUL FOR

Mathematicians, geometry enthusiasts, students studying algebra and triangle properties, and anyone interested in solving logarithmic expressions related to geometric figures.

Saitama
Messages
4,244
Reaction score
93
Problem:
Given that $a,b$ and $c$ are the sides of $\Delta ABC$ such that $$z=\log_{2^a+2^{-a}} \left(4(ab+bc+ca)-(a+b+c)^2\right)$$ then $z$ has a real value if and only if

A)a=b=2c
B)3a=2b=c
C)a-b=3c
D)None of these

Attempt:
I am not sure where to start with this kind of problem. I wrote the expression inside the logarithm as follows:
$$-(a^2+b^2+c^2-2(ab+bc+ca))$$
Since, anything inside the logarithm must be greater than zero, I have
$$a^2+b^2+c^2-2(ab+bc+ca)<0 \Rightarrow a^2+b^2+c^2<2(ab+bc+ca)$$
But $a^2+b^2+c^2 >ab+bc+ca$, I get $ab+bc+ca>0$. I doubt this is going to help.

Any help is appreciated. Thanks!
 
Mathematics news on Phys.org
Pranav said:
Problem:
Given that $a,b$ and $c$ are the sides of $\Delta ABC$ such that $$z=\log_{2^a+2^{-a}} \left(4(ab+bc+ca)-(a+b+c)^2\right)$$ then $z$ has a real value if and only if

A)a=b=2c
B)3a=2b=c
C)a-b=3c
D)None of these

Attempt:
I am not sure where to start with this kind of problem. I wrote the expression inside the logarithm as follows:
$$-(a^2+b^2+c^2-2(ab+bc+ca))$$
Since, anything inside the logarithm must be greater than zero,

Hey Pranav! :)

I agree that the argument to the logarithm should be greater than zero.
From that point on the problem is symmetric in $a,b,c$.
That is, they can be swapped around giving the same expression.
In other words, none of the answers A, B, or C fit.
Therefore the answer must be D.

I have
$$a^2+b^2+c^2-2(ab+bc+ca)<0 \Rightarrow a^2+b^2+c^2<2(ab+bc+ca)$$
But $a^2+b^2+c^2 >ab+bc+ca$, I get $ab+bc+ca>0$. I doubt this is going to help.

Any help is appreciated. Thanks!

I believe that should be a $\ge$ sign.

Anyway, since $a,b,c$ are the sides of a triangle (which you did not use yet), you can conclude that this is always the case.
 
If $a,b,c$ are the sides of a triangle then $b+c > a$, $c+a>b$ and $a+b>c$. Multiply the first of those inequalities by $a$, the second by $b$ and the third by $c$, and add. That gives $2(bc+ca+ab) > a^2+b^2+c^2.$ Therefore $4(bc+ca+ab) > a^2+b^2+c^2 + 2(bc+ca+ab) = (a+b+c)^2.$ So $4(bc+ca+ab) - (a+b+c)^2$ is always positive and therefore always has a real logarithm (to any base).
 
I like Serena said:
That is, they can be swapped around giving the same expression.

Hi ILS! :)

I understand the above statement but how do you conclude the following:
In other words, none of the answers A, B, or C fit.
:confused:

Opalg said:
If $a,b,c$ are the sides of a triangle then $b+c > a$, $c+a>b$ and $a+b>c$. Multiply the first of those inequalities by $a$, the second by $b$ and the third by $c$, and add. That gives $2(bc+ca+ab) > a^2+b^2+c^2.$ Therefore $4(bc+ca+ab) > a^2+b^2+c^2 + 2(bc+ca+ab) = (a+b+c)^2.$ So $4(bc+ca+ab) - (a+b+c)^2$ is always positive and therefore always has a real logarithm (to any base).

Thanks a lot Opalg, very nicely done. :)
 
Pranav said:
Hi ILS! :)

I understand the above statement but how do you conclude the following:
In other words, none of the answers A, B, or C fit.

Since the problem is symmetric in $a, b, c$ the correct answer will also have to be symmetric in $a, b, c$. Neither of the answers A, B, or C are.
 
I like Serena said:
Since the problem is symmetric in $a, b, c$ the correct answer will also have to be symmetric in $a, b, c$. Neither of the answers A, B, or C are.

I see it now, thanks ILS! :)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K