MHB Trig Challenge: Proving $\cos^3 y+\sin^3 y=\cos x+\sin x$

Click For Summary
The discussion focuses on proving the equation $\cos^3 y + \sin^3 y = \cos x + \sin x$ under the condition that $\dfrac{\cos x}{\cos y} + \dfrac{\sin x}{\sin y} = -1$. Participants explore the implications of this condition, leading to the conclusion that $\dfrac{\cos^3 y}{\cos x} + \dfrac{\sin^3 y}{\sin x} = 1$. Multiple solutions are presented, with one participant expressing gratitude for another's contribution. The conversation emphasizes the mathematical relationships and proofs involved in the challenge.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that if $\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1$, then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1$.
 
Mathematics news on Phys.org
anemone said:
Show that if $\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1$, then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1$.
$\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1---(1)$,
then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1---(2)$
let:$a=\dfrac{cos\, y}{cos\, x}$
$b=\dfrac{sin\, y}{sin\, x}$
if (2) is true then we must have :$\cos^2\,y=\dfrac {1-b}{a-b}$
and (1)+(2)=$a\,cos^2\,y+b\,sin^2\,y+\dfrac{1}{a}+\dfrac {1}{b}=0$
=$cos^2\,y(a-b)+b+\dfrac{1}{a}+\dfrac{1}{b}=0$
$1-b+b+\dfrac{1}{a}+\dfrac{1}{b}=0$
$\dfrac{1}{a}+\dfrac{1}{b}=-1$
this is given in (1)
 
Thanks Albert for your solution!:)

Here is another solution of other I wanted to share:
Let $a=\dfrac{\cos y}{\cos x}$ and $b=\dfrac{\sin y}{\sin x}$.

Since $\dfrac{1}{a}+\dfrac{1}{b}=-1$, we have that $-(a+b)=ab$ or $-(a+b)(a-b)=ab(a-b)\implies (b^2-a^2)=ab(a-b)$. Now,

$\begin{align*}1&=\cos^2 y+\sin^2 y\\&=a^2\cos^2 x+b^2\sin^2 x\\&=a^2+(b^2-a^2)\sin^2 x\\&=a^2+ab(a-b)\sin^2 x\end{align*}$

Hence,

$\begin{align*}\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}&=a^3\cos^2 x+b^3\sin^2 x\\&=a(a^2\cos^2 x+b^2\sin^2 x)+(b-a)b^2\sin^2 x\\&=a(1)-(a-b)b^2\sin^2 x\\&=a-\dfrac{(1-a^2)(b)}{a}\\&=\dfrac{a^2+a^2b-b}{a}\\&=\dfrac{a^2+a^2b-(-a-ab)}{a}\\&=a+ab+1+b\\&=0+1\\&=1\end{align*}$
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K