MHB Trig Challenge: Proving $\cos^3 y+\sin^3 y=\cos x+\sin x$

Click For Summary
The discussion focuses on proving the equation $\cos^3 y + \sin^3 y = \cos x + \sin x$ under the condition that $\dfrac{\cos x}{\cos y} + \dfrac{\sin x}{\sin y} = -1$. Participants explore the implications of this condition, leading to the conclusion that $\dfrac{\cos^3 y}{\cos x} + \dfrac{\sin^3 y}{\sin x} = 1$. Multiple solutions are presented, with one participant expressing gratitude for another's contribution. The conversation emphasizes the mathematical relationships and proofs involved in the challenge.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that if $\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1$, then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1$.
 
Mathematics news on Phys.org
anemone said:
Show that if $\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1$, then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1$.
$\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1---(1)$,
then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1---(2)$
let:$a=\dfrac{cos\, y}{cos\, x}$
$b=\dfrac{sin\, y}{sin\, x}$
if (2) is true then we must have :$\cos^2\,y=\dfrac {1-b}{a-b}$
and (1)+(2)=$a\,cos^2\,y+b\,sin^2\,y+\dfrac{1}{a}+\dfrac {1}{b}=0$
=$cos^2\,y(a-b)+b+\dfrac{1}{a}+\dfrac{1}{b}=0$
$1-b+b+\dfrac{1}{a}+\dfrac{1}{b}=0$
$\dfrac{1}{a}+\dfrac{1}{b}=-1$
this is given in (1)
 
Thanks Albert for your solution!:)

Here is another solution of other I wanted to share:
Let $a=\dfrac{\cos y}{\cos x}$ and $b=\dfrac{\sin y}{\sin x}$.

Since $\dfrac{1}{a}+\dfrac{1}{b}=-1$, we have that $-(a+b)=ab$ or $-(a+b)(a-b)=ab(a-b)\implies (b^2-a^2)=ab(a-b)$. Now,

$\begin{align*}1&=\cos^2 y+\sin^2 y\\&=a^2\cos^2 x+b^2\sin^2 x\\&=a^2+(b^2-a^2)\sin^2 x\\&=a^2+ab(a-b)\sin^2 x\end{align*}$

Hence,

$\begin{align*}\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}&=a^3\cos^2 x+b^3\sin^2 x\\&=a(a^2\cos^2 x+b^2\sin^2 x)+(b-a)b^2\sin^2 x\\&=a(1)-(a-b)b^2\sin^2 x\\&=a-\dfrac{(1-a^2)(b)}{a}\\&=\dfrac{a^2+a^2b-b}{a}\\&=\dfrac{a^2+a^2b-(-a-ab)}{a}\\&=a+ab+1+b\\&=0+1\\&=1\end{align*}$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K