Trig Challenge: Proving $\cos^3 y+\sin^3 y=\cos x+\sin x$

Click For Summary
SUMMARY

The discussion centers on proving the identity $\cos^3 y + \sin^3 y = \cos x + \sin x$ under the condition that $\frac{\cos x}{\cos y} + \frac{\sin x}{\sin y} = -1$. The proof demonstrates that this condition leads to the conclusion $\frac{\cos^3 y}{\cos x} + \frac{\sin^3 y}{\sin x} = 1$. Participants, including a contributor named Albert, share various approaches to this trigonometric challenge, emphasizing the relationship between the angles x and y.

PREREQUISITES
  • Understanding of trigonometric identities
  • Familiarity with the properties of sine and cosine functions
  • Knowledge of algebraic manipulation of equations
  • Experience with proving mathematical identities
NEXT STEPS
  • Study the derivation of trigonometric identities using algebraic methods
  • Explore the implications of the condition $\frac{\cos x}{\cos y} + \frac{\sin x}{\sin y} = -1$
  • Investigate the applications of cubic identities in trigonometry
  • Learn about the geometric interpretations of sine and cosine functions
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in advanced trigonometric proofs and identities.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that if $\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1$, then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1$.
 
Mathematics news on Phys.org
anemone said:
Show that if $\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1$, then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1$.
$\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1---(1)$,
then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1---(2)$
let:$a=\dfrac{cos\, y}{cos\, x}$
$b=\dfrac{sin\, y}{sin\, x}$
if (2) is true then we must have :$\cos^2\,y=\dfrac {1-b}{a-b}$
and (1)+(2)=$a\,cos^2\,y+b\,sin^2\,y+\dfrac{1}{a}+\dfrac {1}{b}=0$
=$cos^2\,y(a-b)+b+\dfrac{1}{a}+\dfrac{1}{b}=0$
$1-b+b+\dfrac{1}{a}+\dfrac{1}{b}=0$
$\dfrac{1}{a}+\dfrac{1}{b}=-1$
this is given in (1)
 
Thanks Albert for your solution!:)

Here is another solution of other I wanted to share:
Let $a=\dfrac{\cos y}{\cos x}$ and $b=\dfrac{\sin y}{\sin x}$.

Since $\dfrac{1}{a}+\dfrac{1}{b}=-1$, we have that $-(a+b)=ab$ or $-(a+b)(a-b)=ab(a-b)\implies (b^2-a^2)=ab(a-b)$. Now,

$\begin{align*}1&=\cos^2 y+\sin^2 y\\&=a^2\cos^2 x+b^2\sin^2 x\\&=a^2+(b^2-a^2)\sin^2 x\\&=a^2+ab(a-b)\sin^2 x\end{align*}$

Hence,

$\begin{align*}\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}&=a^3\cos^2 x+b^3\sin^2 x\\&=a(a^2\cos^2 x+b^2\sin^2 x)+(b-a)b^2\sin^2 x\\&=a(1)-(a-b)b^2\sin^2 x\\&=a-\dfrac{(1-a^2)(b)}{a}\\&=\dfrac{a^2+a^2b-b}{a}\\&=\dfrac{a^2+a^2b-(-a-ab)}{a}\\&=a+ab+1+b\\&=0+1\\&=1\end{align*}$
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K