MHB Trig Challenge: Proving $\cos^3 y+\sin^3 y=\cos x+\sin x$

AI Thread Summary
The discussion focuses on proving the equation $\cos^3 y + \sin^3 y = \cos x + \sin x$ under the condition that $\dfrac{\cos x}{\cos y} + \dfrac{\sin x}{\sin y} = -1$. Participants explore the implications of this condition, leading to the conclusion that $\dfrac{\cos^3 y}{\cos x} + \dfrac{\sin^3 y}{\sin x} = 1$. Multiple solutions are presented, with one participant expressing gratitude for another's contribution. The conversation emphasizes the mathematical relationships and proofs involved in the challenge.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Show that if $\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1$, then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1$.
 
Mathematics news on Phys.org
anemone said:
Show that if $\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1$, then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1$.
$\dfrac{\cos x}{\cos y}+\dfrac{\sin x}{\sin y}=-1---(1)$,
then $\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}=1---(2)$
let:$a=\dfrac{cos\, y}{cos\, x}$
$b=\dfrac{sin\, y}{sin\, x}$
if (2) is true then we must have :$\cos^2\,y=\dfrac {1-b}{a-b}$
and (1)+(2)=$a\,cos^2\,y+b\,sin^2\,y+\dfrac{1}{a}+\dfrac {1}{b}=0$
=$cos^2\,y(a-b)+b+\dfrac{1}{a}+\dfrac{1}{b}=0$
$1-b+b+\dfrac{1}{a}+\dfrac{1}{b}=0$
$\dfrac{1}{a}+\dfrac{1}{b}=-1$
this is given in (1)
 
Thanks Albert for your solution!:)

Here is another solution of other I wanted to share:
Let $a=\dfrac{\cos y}{\cos x}$ and $b=\dfrac{\sin y}{\sin x}$.

Since $\dfrac{1}{a}+\dfrac{1}{b}=-1$, we have that $-(a+b)=ab$ or $-(a+b)(a-b)=ab(a-b)\implies (b^2-a^2)=ab(a-b)$. Now,

$\begin{align*}1&=\cos^2 y+\sin^2 y\\&=a^2\cos^2 x+b^2\sin^2 x\\&=a^2+(b^2-a^2)\sin^2 x\\&=a^2+ab(a-b)\sin^2 x\end{align*}$

Hence,

$\begin{align*}\dfrac{\cos^3 y}{\cos x}+\dfrac{\sin^3 y}{\sin x}&=a^3\cos^2 x+b^3\sin^2 x\\&=a(a^2\cos^2 x+b^2\sin^2 x)+(b-a)b^2\sin^2 x\\&=a(1)-(a-b)b^2\sin^2 x\\&=a-\dfrac{(1-a^2)(b)}{a}\\&=\dfrac{a^2+a^2b-b}{a}\\&=\dfrac{a^2+a^2b-(-a-ab)}{a}\\&=a+ab+1+b\\&=0+1\\&=1\end{align*}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top