MHB Unbounded subset of ordinals a set?

  • Thread starter Thread starter RWood
  • Start date Start date
  • Tags Tags
    Set
RWood
Messages
4
Reaction score
0
Let R be the class of all ordinals. If a subset C of R is unbounded (i.e. for any ordinal \alpha \in R, there is \beta in C with \beta greater than \alpha ), then it seems to me that C cannot be a set, only a class. Is this true, and if so, how does one prove it? My reading on the general subject matter is limited to a bit of web browsing - perhaps the problem is trivial.
 
Physics news on Phys.org
RWood said:
Let R be the class of all ordinals. If a subset C of R is unbounded (i.e. for any ordinal \alpha \in R, there is \beta in C with \beta greater than \alpha ), then it seems to me that C cannot be a set, only a class. Is this true, and if so, how does one prove it? My reading on the general subject matter is limited to a bit of web browsing - perhaps the problem is trivial.

I think I have the outline of a proof (there may of course be something much quicker!).

1) It is quite easy to get a 1-1 correspondence between C and R; a map C=>R is obvious; a 1-1 map R=>C can be constructed by transfinite induction, using
the unboundedness of C to ensure successor elements (or limit ordinals) are mapped to an increasing sequence of C-members.

2) On the other hand, if C is a set then it is bijective with some ordinal A (and some cardinal as well). But then A would be bijective with R, and that is clearly impossible. All this assumes we are a ZFC world.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Replies
14
Views
2K
Replies
1
Views
1K
Replies
2
Views
2K
Replies
18
Views
3K
Replies
15
Views
2K
Replies
28
Views
6K
Back
Top