I Uncertainty principle##\Delta H\Delta Q##, where Q is time-independent

Click For Summary
In the discussion on the uncertainty principle involving the time-independent operator Q, it is established that since Q is time-independent, the commutation relation [H, Q] equals zero. This leads to the conclusion that the uncertainty product ΔHΔQ is greater than or equal to zero. However, a deeper evaluation shows that ΔHΔQ must actually satisfy the inequality ΔHΔQ ≥ |(ħ/2)d<Q>/dt|, indicating that the initial conclusion is incorrect. The error arises from incorrectly equating the Hamiltonian with the time derivative, which overlooks the distinct Hamiltonians for different systems and their respective wavefunction evolutions. Thus, the correct interpretation emphasizes the relationship between the uncertainty and the dynamics of the system.
Foracle
Messages
29
Reaction score
8
TL;DR
Why is ##\Delta H\Delta Q \ge |\frac{ħ}{2}##d<Q>/dt##|##
Let Q be a time-independent operator.
##[H,Q] = iħ[\frac{d}{dt},Q]##
Since Q is time-independent, ##[H,Q]=0##

And from the uncertainty principle :
##\Delta H\Delta Q \ge |<\Psi|\frac{1}{2i}[H,Q]|\Psi>|##
From ##[H,Q] = 0##, I concluded that ##\Delta H\Delta Q \ge 0##

But by evaluating d<Q>/dt, it can be found that ##\Delta H\Delta Q \ge |\frac{ħ}{2}##d<Q>/dt##|##

I know that the right answer is the latter, but I just want to know why ##\Delta H\Delta Q \ge 0## is wrong.
 
Physics news on Phys.org
You go wrong when you equate the Hamiltonian with the time derivative. Your identification implies there is no difference between the Hamiltonians describing different systems or the time-evolution of the wavefunctions for those systems.
 
For the quantum state ##|l,m\rangle= |2,0\rangle## the z-component of angular momentum is zero and ##|L^2|=6 \hbar^2##. According to uncertainty it is impossible to determine the values of ##L_x, L_y, L_z## simultaneously. However, we know that ##L_x## and ## L_y##, like ##L_z##, get the values ##(-2,-1,0,1,2) \hbar##. In other words, for the state ##|2,0\rangle## we have ##\vec{L}=(L_x, L_y,0)## with ##L_x## and ## L_y## one of the values ##(-2,-1,0,1,2) \hbar##. But none of these...

Similar threads

  • · Replies 13 ·
Replies
13
Views
1K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
6K
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K