Undergrad Uncertainty principle##\Delta H\Delta Q##, where Q is time-independent

Click For Summary
In the discussion on the uncertainty principle involving the time-independent operator Q, it is established that since Q is time-independent, the commutation relation [H, Q] equals zero. This leads to the conclusion that the uncertainty product ΔHΔQ is greater than or equal to zero. However, a deeper evaluation shows that ΔHΔQ must actually satisfy the inequality ΔHΔQ ≥ |(ħ/2)d<Q>/dt|, indicating that the initial conclusion is incorrect. The error arises from incorrectly equating the Hamiltonian with the time derivative, which overlooks the distinct Hamiltonians for different systems and their respective wavefunction evolutions. Thus, the correct interpretation emphasizes the relationship between the uncertainty and the dynamics of the system.
Foracle
Messages
29
Reaction score
8
TL;DR
Why is ##\Delta H\Delta Q \ge |\frac{ħ}{2}##d<Q>/dt##|##
Let Q be a time-independent operator.
##[H,Q] = iħ[\frac{d}{dt},Q]##
Since Q is time-independent, ##[H,Q]=0##

And from the uncertainty principle :
##\Delta H\Delta Q \ge |<\Psi|\frac{1}{2i}[H,Q]|\Psi>|##
From ##[H,Q] = 0##, I concluded that ##\Delta H\Delta Q \ge 0##

But by evaluating d<Q>/dt, it can be found that ##\Delta H\Delta Q \ge |\frac{ħ}{2}##d<Q>/dt##|##

I know that the right answer is the latter, but I just want to know why ##\Delta H\Delta Q \ge 0## is wrong.
 
Physics news on Phys.org
You go wrong when you equate the Hamiltonian with the time derivative. Your identification implies there is no difference between the Hamiltonians describing different systems or the time-evolution of the wavefunctions for those systems.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA

Similar threads

  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 2 ·
Replies
2
Views
526