Uncovering Overlooked Solutions: Solving a Triple Integer Equation

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around finding all triples of positive integers \((a, b, c)\) that satisfy the equation \(\dfrac{a}{b}+\dfrac{b}{c+1}+\dfrac{c}{a}=\dfrac{5}{2}\). The scope includes mathematical reasoning and exploration of potential solutions.

Discussion Character

  • Mathematical reasoning
  • Exploratory

Main Points Raised

  • One participant presents the equation and applies the GM-AM inequality to derive constraints on the variables.
  • It is proposed that for the inequality to hold, \(c\) must equal 1, leading to a simplified equation.
  • A quadratic equation in \(a\) is derived from substituting \(c=1\), and the conditions for \(b\) are discussed, noting that \(b\) must be less than 5.
  • Specific values of \(b\) are examined, with \(b=1\) and \(b=2\) yielding valid solutions, while \(b=3\) and \(b=4\) lead to negative square roots.
  • The proposed solutions are \((1,1,1)\) and \((2,2,1)\). Another participant acknowledges the oversight in the checking process of the solutions.

Areas of Agreement / Disagreement

Participants generally agree on the derived solutions, but there is acknowledgment of an oversight in the checking process, indicating that the discussion includes elements of refinement and correction.

Contextual Notes

The discussion does not resolve all potential solutions or explore all cases exhaustively, leaving some assumptions and conditions implicit.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all triples $(a,\,b,\,c)$ of positive integers such that $\dfrac{a}{b}+\dfrac{b}{c+1}+\dfrac{c}{a}=\dfrac{5}{2}$.
 
Mathematics news on Phys.org
anemone said:
Find all triples $(a,\,b,\,c)$ of positive integers such that $\dfrac{a}{b}+\dfrac{b}{c+1}+\dfrac{c}{a}=\dfrac{5}{2}$.
[sp]By the GM-AM inequality, $\Bigl(\dfrac{abc}{b(c+1)a}\Bigr)^{1/3} \leqslant \dfrac13\Bigl(\dfrac ab + \dfrac b{c+1} + \dfrac ca\Bigr) = \dfrac56.$

Therefore $\dfrac{abc}{b(c+1)a} \leqslant \Bigl(\dfrac56\Bigr)^3$. Taking reciprocals, $1 + \dfrac1c \geqslant \Bigl(\dfrac65\Bigr)^3 = 1.728.$ The only way that can happen for a positive integer $c$ is if $c=1.$

Putting $c=1$, the original equation becomes $\dfrac ab + \dfrac b2 + \dfrac1a= \dfrac52.$ Multiplying out the fractions, that becomes $2a^2 - b(5-b)a + 2b = 0$, a quadratic in $a$ with solution $a = \frac14\bigl(b(5-b) \pm\sqrt{b^2(5-b)^2 - 16 b}\bigr).$ For this to give a positive value for $a$ we must clearly have $b<5$. But $b=3$ and $b=4$ make that square root negative, so the only possible values for $b$ are $b=1$ and $b=2.$ It is easy to check that those both give solutions, with $a=b$ in both cases.

Therefore the solutions are $(a,b,c) = (1,1,1)$ and $(a,b,c) = (2,2,1)$.[/sp]
 
Thanks for participating, Opalg!:)

Solution of other:

We can rewrite the given equation to get:

$\dfrac{a}{b}+\dfrac{b}{c+1}+\dfrac{c}{a}=\dfrac{5}{2}$

$\dfrac{a}{b}+\dfrac{b}{c+1}+\dfrac{c+1-1}{a}=\dfrac{5}{2}$

$\dfrac{a}{b}+\dfrac{b}{c+1}+\dfrac{c+1}{a}-\dfrac{1}{a}=\dfrac{5}{2}$

$\dfrac{a}{b}+\dfrac{b}{c+1}+\dfrac{c+1}{a}=\dfrac{5}{2}+\dfrac{1}{a}$

Applying AM-GM inequality to the terms on the left, we have:

$\begin{align*}\dfrac{a}{b}+\dfrac{b}{c+1}+\dfrac{c}{a}&\ge 3\sqrt[3]{\dfrac{a}{b}\cdot \dfrac{b}{c+1}\cdot \dfrac{c+1}{a}}\\&\ge 3 \end{align*}$

This implies $\dfrac{1}{a}\ge \dfrac{1}{2}$, which means $a\le 2$.

We thus have to consider two cases, $a=2$ and $a=1$.

When $a=2$, equality must be attained, i.e. $\dfrac{2}{b}=\dfrac{b}{c+1}=\dfrac{c+1}{2}$.

It follows that $b(c+1)=4$ so we have two choices, $b=2$, $c=1$ or $b=1$, $c=3$.

However, note that the second pair of solution does not satisfy $\dfrac{2}{b}=\dfrac{b}{c+1}$, thus we get only one solution in this case, namely $(a,\,b,\,c)=(2,\,2,\,1)$.

If $a=1$, the equality becomes $\dfrac{1}{b}+\dfrac{b}{c+1}+c=\dfrac{5}{2}$, which implies $c<2$.

For $c=1$, we get $\dfrac{1}{b}+\dfrac{b}{2}=\dfrac{3}{2}$, i.e. $b^2-3b+2=0$. This gives two solutions, $b=1$ and $b=2$ that yield $(a,\,b,\,c)=(1,\,1,\,1),\,(1,\,2,\,1)$.

For $c=2$, we get $\dfrac{1}{b}+\dfrac{b}{3}=\dfrac{1}{2}$, i.e. $2b^2-3b+6=0$. This does not have positive integer solutions.

We conclude that all solutions are given by that yield $(a,\,b,\,c)=(1,\,1,\,1),\,(1,\,2,\,1),\,(2,\,2,\,1)$.

Opalg has overlooked the pair $(a,\,b,\,c)=(1,\,2,\,1)$ but I know that is purely an honest careless mistake.(Smile)
 
anemone said:
Opalg has overlooked the pair $(a,\,b,\,c)=(1,\,2,\,1)$
[sp]Notice that the solution that I overlooked was in the section where I casually claimed "It is easy to check ...". Therein lies a lesson. (Shake)[/sp]
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K