Understanding Bra Ket Correspondence and Proving (1.8) Transformation

  • Context: Undergrad 
  • Thread starter Thread starter Kashmir
  • Start date Start date
  • Tags Tags
    Bra ket
Click For Summary
SUMMARY

The discussion centers on the understanding of bra-ket notation in quantum mechanics, specifically regarding the transformation and properties of inner products. The key point established is that the equation (1.8) follows from the conjugate linearity of the inner product, rather than being an assumption. Participants emphasize the necessity of formal linear algebra knowledge to navigate Dirac notation effectively, highlighting the importance of consistent terminology and the distinction between scalars and kets in proofs.

PREREQUISITES
  • Understanding of Dirac notation in quantum mechanics
  • Knowledge of conjugate linearity in inner products
  • Familiarity with linear algebra concepts
  • Ability to differentiate between scalars and kets
NEXT STEPS
  • Study the properties of inner products in quantum mechanics
  • Learn about conjugate linearity and its implications in Dirac notation
  • Explore formal linear algebra techniques relevant to quantum mechanics
  • Review the distinctions between bra and ket vectors in quantum theory
USEFUL FOR

Students of quantum mechanics, physicists working with Dirac notation, and anyone seeking to deepen their understanding of linear algebra in the context of quantum theory.

Kashmir
Messages
466
Reaction score
74
IMG_20211002_214821.JPG


I can't follow how the above argument leads to (1.8).

I am able to prove it only if I can show ##\langle a \mid c\rangle\langle b+c\rangle=(\langle a|+\langle b|) c\rangle## but I don't understand why the bra transformations <P| ,<Q| obey
(<P|+ <Q|)x = <P|x + <Q|x .
Is it an assumption?

Please help me
 
Last edited:
Physics news on Phys.org
Kashmir said:
View attachment 290057

I can't follow how the above argument leads to (1.8).

I am able to prove it only if I can show ##\langle a \mid c\rangle+\langle b+c\rangle=(\langle a|+\langle b|) c\rangle## but I don't understand why the bra transformations <P| ,<Q| obey
(<P|+ <Q|)x = <P|x + <Q|x .
Is it an assumption?

Please help me
It's not an assumption. In order to make progress with QM - and especially Dirac notation - you are going to have to learn some formal linear algebra and, in particularm how to use defined properties to construct proofs.

(1.8) follows directly from the conjugate linearity of the inner product.
 
PeroK said:
It's not an assumption. In order to make progress with QM - and especially Dirac notation - you are going to have to learn some formal linear algebra and, in particularm how to use defined properties to construct proofs.

(1.8) follows directly from the conjugate linearity of the inner product.
Perhaps you mean this:

##(a+b, c)=(|a+b\rangle,|c\rangle)=\langle a+b \mid c\rangle -(1)##Also
##(a+b, c)=(a, c)+(b, c)=\langle a \mid c\rangle+\langle b \mid c\rangle-(2)##

From equations 1,2 we have

##\langle a+b \mid c\rangle=\langle a \mid c\rangle+\langle b \mid c\rangle## and not ##\langle a+b \mid c\rangle=(\langle a|+\langle b|) c\rangle## which is my doubt.
 
Kashmir said:
Perhaps you mean this:

##(a+b, c)=(|a+b\rangle,|c\rangle)=\langle a+b \mid c\rangle -(1)##Also
##(a+b, c)=(a, c)+(b, c)=\langle a \mid c\rangle+\langle b \mid c\rangle-(2)##

From equations 1,2 we have

##\langle a+b \mid c\rangle=\langle a \mid c\rangle+\langle b \mid c\rangle## and not ##\langle a+b \mid c\rangle=(\langle a|+\langle b|) c\rangle## which is my doubt.
These constructions are invalid: you can't mix orthodox linear algebra notation with bras and kets. It's one or the other. Note how careful the author of the section you posted was to keep the terminology consistent.

In any case, I thought the question was how to prove that:$$\langle u|\alpha^* \ \leftrightarrow \ \alpha |u\rangle$$What that means is: if ##\langle u|## is the bra corresponding to the ket ##|u \rangle##, then the bra ##\langle u|\alpha^*##corresponds to the ket ##\alpha |u\rangle##.

Note that ##\alpha## is a scalar - you also seem to be confused by the roles of scalars and kets. You may need a course in linear algebra before you can proceed any further with QM.
 
  • Like
Likes   Reactions: PeterDonis

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K