I Understanding Bra Ket Correspondence and Proving (1.8) Transformation

  • Thread starter Thread starter Kashmir
  • Start date Start date
  • Tags Tags
    Bra ket
Click For Summary
The discussion centers on proving the transformation (1.8) in quantum mechanics using Dirac notation. Participants express confusion about the relationship between bra transformations and their linear properties. It is clarified that the conjugate linearity of the inner product is essential for deriving (1.8) and that mixing linear algebra notation with bra-ket notation is incorrect. The importance of understanding formal linear algebra is emphasized for progress in quantum mechanics. A foundational understanding of scalars and their roles in the context of bras and kets is also deemed necessary for further comprehension.
Kashmir
Messages
466
Reaction score
74
IMG_20211002_214821.JPG


I can't follow how the above argument leads to (1.8).

I am able to prove it only if I can show ##\langle a \mid c\rangle\langle b+c\rangle=(\langle a|+\langle b|) c\rangle## but I don't understand why the bra transformations <P| ,<Q| obey
(<P|+ <Q|)x = <P|x + <Q|x .
Is it an assumption?

Please help me
 
Last edited:
Physics news on Phys.org
Kashmir said:
View attachment 290057

I can't follow how the above argument leads to (1.8).

I am able to prove it only if I can show ##\langle a \mid c\rangle+\langle b+c\rangle=(\langle a|+\langle b|) c\rangle## but I don't understand why the bra transformations <P| ,<Q| obey
(<P|+ <Q|)x = <P|x + <Q|x .
Is it an assumption?

Please help me
It's not an assumption. In order to make progress with QM - and especially Dirac notation - you are going to have to learn some formal linear algebra and, in particularm how to use defined properties to construct proofs.

(1.8) follows directly from the conjugate linearity of the inner product.
 
PeroK said:
It's not an assumption. In order to make progress with QM - and especially Dirac notation - you are going to have to learn some formal linear algebra and, in particularm how to use defined properties to construct proofs.

(1.8) follows directly from the conjugate linearity of the inner product.
Perhaps you mean this:

##(a+b, c)=(|a+b\rangle,|c\rangle)=\langle a+b \mid c\rangle -(1)##Also
##(a+b, c)=(a, c)+(b, c)=\langle a \mid c\rangle+\langle b \mid c\rangle-(2)##

From equations 1,2 we have

##\langle a+b \mid c\rangle=\langle a \mid c\rangle+\langle b \mid c\rangle## and not ##\langle a+b \mid c\rangle=(\langle a|+\langle b|) c\rangle## which is my doubt.
 
Kashmir said:
Perhaps you mean this:

##(a+b, c)=(|a+b\rangle,|c\rangle)=\langle a+b \mid c\rangle -(1)##Also
##(a+b, c)=(a, c)+(b, c)=\langle a \mid c\rangle+\langle b \mid c\rangle-(2)##

From equations 1,2 we have

##\langle a+b \mid c\rangle=\langle a \mid c\rangle+\langle b \mid c\rangle## and not ##\langle a+b \mid c\rangle=(\langle a|+\langle b|) c\rangle## which is my doubt.
These constructions are invalid: you can't mix orthodox linear algebra notation with bras and kets. It's one or the other. Note how careful the author of the section you posted was to keep the terminology consistent.

In any case, I thought the question was how to prove that:$$\langle u|\alpha^* \ \leftrightarrow \ \alpha |u\rangle$$What that means is: if ##\langle u|## is the bra corresponding to the ket ##|u \rangle##, then the bra ##\langle u|\alpha^*##corresponds to the ket ##\alpha |u\rangle##.

Note that ##\alpha## is a scalar - you also seem to be confused by the roles of scalars and kets. You may need a course in linear algebra before you can proceed any further with QM.
 
I am slowly going through the book 'What Is a Quantum Field Theory?' by Michel Talagrand. I came across the following quote: One does not" prove” the basic principles of Quantum Mechanics. The ultimate test for a model is the agreement of its predictions with experiments. Although it may seem trite, it does fit in with my modelling view of QM. The more I think about it, the more I believe it could be saying something quite profound. For example, precisely what is the justification of...

Similar threads

  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 31 ·
2
Replies
31
Views
2K