Undergrad Understanding Bra Ket Correspondence and Proving (1.8) Transformation

  • Thread starter Thread starter Kashmir
  • Start date Start date
  • Tags Tags
    Bra ket
Click For Summary
The discussion centers on proving the transformation (1.8) in quantum mechanics using Dirac notation. Participants express confusion about the relationship between bra transformations and their linear properties. It is clarified that the conjugate linearity of the inner product is essential for deriving (1.8) and that mixing linear algebra notation with bra-ket notation is incorrect. The importance of understanding formal linear algebra is emphasized for progress in quantum mechanics. A foundational understanding of scalars and their roles in the context of bras and kets is also deemed necessary for further comprehension.
Kashmir
Messages
466
Reaction score
74
IMG_20211002_214821.JPG


I can't follow how the above argument leads to (1.8).

I am able to prove it only if I can show ##\langle a \mid c\rangle\langle b+c\rangle=(\langle a|+\langle b|) c\rangle## but I don't understand why the bra transformations <P| ,<Q| obey
(<P|+ <Q|)x = <P|x + <Q|x .
Is it an assumption?

Please help me
 
Last edited:
Physics news on Phys.org
Kashmir said:
View attachment 290057

I can't follow how the above argument leads to (1.8).

I am able to prove it only if I can show ##\langle a \mid c\rangle+\langle b+c\rangle=(\langle a|+\langle b|) c\rangle## but I don't understand why the bra transformations <P| ,<Q| obey
(<P|+ <Q|)x = <P|x + <Q|x .
Is it an assumption?

Please help me
It's not an assumption. In order to make progress with QM - and especially Dirac notation - you are going to have to learn some formal linear algebra and, in particularm how to use defined properties to construct proofs.

(1.8) follows directly from the conjugate linearity of the inner product.
 
PeroK said:
It's not an assumption. In order to make progress with QM - and especially Dirac notation - you are going to have to learn some formal linear algebra and, in particularm how to use defined properties to construct proofs.

(1.8) follows directly from the conjugate linearity of the inner product.
Perhaps you mean this:

##(a+b, c)=(|a+b\rangle,|c\rangle)=\langle a+b \mid c\rangle -(1)##Also
##(a+b, c)=(a, c)+(b, c)=\langle a \mid c\rangle+\langle b \mid c\rangle-(2)##

From equations 1,2 we have

##\langle a+b \mid c\rangle=\langle a \mid c\rangle+\langle b \mid c\rangle## and not ##\langle a+b \mid c\rangle=(\langle a|+\langle b|) c\rangle## which is my doubt.
 
Kashmir said:
Perhaps you mean this:

##(a+b, c)=(|a+b\rangle,|c\rangle)=\langle a+b \mid c\rangle -(1)##Also
##(a+b, c)=(a, c)+(b, c)=\langle a \mid c\rangle+\langle b \mid c\rangle-(2)##

From equations 1,2 we have

##\langle a+b \mid c\rangle=\langle a \mid c\rangle+\langle b \mid c\rangle## and not ##\langle a+b \mid c\rangle=(\langle a|+\langle b|) c\rangle## which is my doubt.
These constructions are invalid: you can't mix orthodox linear algebra notation with bras and kets. It's one or the other. Note how careful the author of the section you posted was to keep the terminology consistent.

In any case, I thought the question was how to prove that:$$\langle u|\alpha^* \ \leftrightarrow \ \alpha |u\rangle$$What that means is: if ##\langle u|## is the bra corresponding to the ket ##|u \rangle##, then the bra ##\langle u|\alpha^*##corresponds to the ket ##\alpha |u\rangle##.

Note that ##\alpha## is a scalar - you also seem to be confused by the roles of scalars and kets. You may need a course in linear algebra before you can proceed any further with QM.
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K