I Understanding Bra Ket Correspondence and Proving (1.8) Transformation

  • I
  • Thread starter Thread starter Kashmir
  • Start date Start date
  • Tags Tags
    Bra ket
Kashmir
Messages
466
Reaction score
74
IMG_20211002_214821.JPG


I can't follow how the above argument leads to (1.8).

I am able to prove it only if I can show ##\langle a \mid c\rangle\langle b+c\rangle=(\langle a|+\langle b|) c\rangle## but I don't understand why the bra transformations <P| ,<Q| obey
(<P|+ <Q|)x = <P|x + <Q|x .
Is it an assumption?

Please help me
 
Last edited:
Physics news on Phys.org
Kashmir said:
View attachment 290057

I can't follow how the above argument leads to (1.8).

I am able to prove it only if I can show ##\langle a \mid c\rangle+\langle b+c\rangle=(\langle a|+\langle b|) c\rangle## but I don't understand why the bra transformations <P| ,<Q| obey
(<P|+ <Q|)x = <P|x + <Q|x .
Is it an assumption?

Please help me
It's not an assumption. In order to make progress with QM - and especially Dirac notation - you are going to have to learn some formal linear algebra and, in particularm how to use defined properties to construct proofs.

(1.8) follows directly from the conjugate linearity of the inner product.
 
PeroK said:
It's not an assumption. In order to make progress with QM - and especially Dirac notation - you are going to have to learn some formal linear algebra and, in particularm how to use defined properties to construct proofs.

(1.8) follows directly from the conjugate linearity of the inner product.
Perhaps you mean this:

##(a+b, c)=(|a+b\rangle,|c\rangle)=\langle a+b \mid c\rangle -(1)##Also
##(a+b, c)=(a, c)+(b, c)=\langle a \mid c\rangle+\langle b \mid c\rangle-(2)##

From equations 1,2 we have

##\langle a+b \mid c\rangle=\langle a \mid c\rangle+\langle b \mid c\rangle## and not ##\langle a+b \mid c\rangle=(\langle a|+\langle b|) c\rangle## which is my doubt.
 
Kashmir said:
Perhaps you mean this:

##(a+b, c)=(|a+b\rangle,|c\rangle)=\langle a+b \mid c\rangle -(1)##Also
##(a+b, c)=(a, c)+(b, c)=\langle a \mid c\rangle+\langle b \mid c\rangle-(2)##

From equations 1,2 we have

##\langle a+b \mid c\rangle=\langle a \mid c\rangle+\langle b \mid c\rangle## and not ##\langle a+b \mid c\rangle=(\langle a|+\langle b|) c\rangle## which is my doubt.
These constructions are invalid: you can't mix orthodox linear algebra notation with bras and kets. It's one or the other. Note how careful the author of the section you posted was to keep the terminology consistent.

In any case, I thought the question was how to prove that:$$\langle u|\alpha^* \ \leftrightarrow \ \alpha |u\rangle$$What that means is: if ##\langle u|## is the bra corresponding to the ket ##|u \rangle##, then the bra ##\langle u|\alpha^*##corresponds to the ket ##\alpha |u\rangle##.

Note that ##\alpha## is a scalar - you also seem to be confused by the roles of scalars and kets. You may need a course in linear algebra before you can proceed any further with QM.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top