I Understanding Special Relativity and Coordinates

lriuui0x0
Messages
101
Reaction score
25
I'd like to get some help on checking my understanding of special relativity, specifically I'm trying to clarify the idea of coordinates. Any comment is really appreciated!

The spacetime is an affine space ##M^4##, which is associated with a 4 dimensional real vector space ##\mathbb{R}^4##. This vector space is abstract, and no basis is prechosen, so there's no canonical way to define what the coordinate might be.

There's a metirc g defined on the vector space ##\mathbb{R}^4##. This inner product has the property that for a particular set of basis, it has ##(+,−,−,−)## signature. Such a basis is a standard Cartesian basis, which is not unique.

The linear maps ##\mathbb{R}^4 \to \mathbb{R}^4## between the sets of standard basis form the Lorentz group. The affine maps ##M^4 \to M^4## between the set of standard basis form the Poincare group. All such maps have the metric signature ##(+, -, -, -)##.

Coordinates is a map ##M^4 \to \mathbb{R}^4## (here ##\mathbb{R}^4## means a four real number tuple, not an abstrct vector space). Any Cartesian basis at a point defines a Cartesian coordinates by defining the coordinates to be the components of the vector. The standard Cartesian coordinates defined as above is the same as the coordinates being inertial. Other coordinates are non-inertial, in which the metric components don't have ##(+, -, -, -)## signature.
 
Physics news on Phys.org
The signature of a fundamental form (it's a better word than "metric", because the "metric" in relativity is not really a metric, because it's not positive definite) is independent of the choice of basis.
 
vanhees71 said:
The signature of a fundamental form (it's a better word than "metric", because the "metric" in relativity is not really a metric, because it's not positive definite) is independent of the choice of basis.
Fundamental form is already used in "the first and second fundamental forms".
 
I guess that's where the naming comes from since Gauss's theory of curved surfaces is the paradigmatic example for the use of a differentiable manifold.
 
Thanks for the checking!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...

Similar threads

Replies
5
Views
318
Replies
8
Views
1K
Replies
29
Views
3K
Replies
34
Views
5K
Replies
8
Views
2K
Replies
5
Views
1K
Back
Top