I Understanding Special Relativity and Coordinates

lriuui0x0
Messages
101
Reaction score
25
I'd like to get some help on checking my understanding of special relativity, specifically I'm trying to clarify the idea of coordinates. Any comment is really appreciated!

The spacetime is an affine space ##M^4##, which is associated with a 4 dimensional real vector space ##\mathbb{R}^4##. This vector space is abstract, and no basis is prechosen, so there's no canonical way to define what the coordinate might be.

There's a metirc g defined on the vector space ##\mathbb{R}^4##. This inner product has the property that for a particular set of basis, it has ##(+,−,−,−)## signature. Such a basis is a standard Cartesian basis, which is not unique.

The linear maps ##\mathbb{R}^4 \to \mathbb{R}^4## between the sets of standard basis form the Lorentz group. The affine maps ##M^4 \to M^4## between the set of standard basis form the Poincare group. All such maps have the metric signature ##(+, -, -, -)##.

Coordinates is a map ##M^4 \to \mathbb{R}^4## (here ##\mathbb{R}^4## means a four real number tuple, not an abstrct vector space). Any Cartesian basis at a point defines a Cartesian coordinates by defining the coordinates to be the components of the vector. The standard Cartesian coordinates defined as above is the same as the coordinates being inertial. Other coordinates are non-inertial, in which the metric components don't have ##(+, -, -, -)## signature.
 
Physics news on Phys.org
The signature of a fundamental form (it's a better word than "metric", because the "metric" in relativity is not really a metric, because it's not positive definite) is independent of the choice of basis.
 
vanhees71 said:
The signature of a fundamental form (it's a better word than "metric", because the "metric" in relativity is not really a metric, because it's not positive definite) is independent of the choice of basis.
Fundamental form is already used in "the first and second fundamental forms".
 
I guess that's where the naming comes from since Gauss's theory of curved surfaces is the paradigmatic example for the use of a differentiable manifold.
 
Thanks for the checking!
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...

Similar threads

Replies
5
Views
383
Replies
8
Views
1K
Replies
29
Views
3K
Replies
34
Views
5K
Replies
8
Views
2K
Replies
5
Views
1K
Back
Top