I Understanding the Derivation of the Ginzburg Criterion for the Ising Model

thatboi
Messages
130
Reaction score
20
For the Ising Model, the Ginzburg Criterion is, for ##m_{0}## the order parameter and ##\delta m## the fluctuations: $$\langle\delta m\left(x\right)\delta m\left(x^{\prime}\right)\rangle << m_{0}^{2}$$. I want to understand how to derive the left hand side of the inequality from ##\langle M^{2} \rangle - \langle M \rangle ^{2}## where ##M = m_{0} + \delta_{m}##. Just from plugging in, I'm not sure how most of the terms cancel out, or what the fate of a term like ##\langle \delta m\rangle \langle \delta m \rangle## is.
 
Physics news on Phys.org
Ok, I think the best way of understanding that ##\langle \delta m \rangle = 0## is by calculating the probability associated with ##\delta m## i.e. calculating its Boltzmann weight and noticing that it is a Gaussian random variable with 0 mean. The other more physical way of arguing it is that we know ##m_{0}## is the value of the order parameter that minimizes the Helmholtz Free Energy so we expect ##\langle M \rangle = m_{0}##.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top