I Understanding the Equations of Motion for the Dirac Lagrangian

Click For Summary
The discussion focuses on the application of the Euler-Lagrange equation to the Dirac Lagrangian, highlighting the derivation of the equations of motion for the Dirac field. The Dirac Lagrangian is expressed as a combination of terms involving the fields Ψ and [overline]Ψ, leading to the equations of motion that can be obtained by differentiating with respect to either field. Key points include that there is no term involving ∂μ[overline]Ψ in the Lagrangian, resulting in ∂L/∂(∂μ[overline]Ψ) equating to zero. This indicates that ∂L/∂[overline]Ψ also equals zero, confirming the relationship between the fields. The discussion emphasizes the importance of direct computation in understanding these relationships within the context of quantum field theory.
JohnH
Messages
63
Reaction score
6
TL;DR
Looking for a proof of
∂(∂L/∂[overline]Ψ[\overline])=0
and
∂L/∂Ψ=-[overline]Ψ[\overline]m
and
∂L/∂(∂[SUB]μ[/SUB]Ψ)=i[overline]Ψ[\overline]γ[SUP]μ[/SUP]
I'm having trouble following a proof of what happens when the Dirac Lagrangian is put into the Euler-Lagrange equation. This is the youtube video: and you can skip to 2:56 and pause to see all the math laid out. I understand the bird's eye results of the Dirac Lagrangian having an equation of motion that is either the Dirac equation or a [overline]Ψ[\overline] version of the Dirac equation, but I'm unclear about why, when putting the Dirac Lagrangian into the Euler-Lagrange equation, the following pieces are:

∂(∂L/∂[overline]Ψ[\overline])=0
and
∂L/∂Ψ=-[overline]Ψ[\overline]m
and
∂L/∂(∂μΨ)=i[overline]Ψ[\overline]γμ

Thanks for all replies.
 
Physics news on Phys.org
You get it by direct computation. The equations of motion for a field ##\psi## described by some Lagrangian ##\mathcal{L}## are the Euler-Lagrange equations $$\frac{\partial\mathcal{L}}{\partial\psi} - \frac{\partial}{\partial x^\mu}\frac{\partial\mathcal{L}}{\partial(\partial_\mu\psi)}=0 \rm{.}$$ In units of ##\hbar=c=1##, the Dirac Lagrangian can be written as $$\mathcal{L} = \bar{\psi}\left(\mathrm{i}\gamma^\mu\partial_\mu - m\right)\psi = \bar{\psi}\mathrm{i}\gamma^\mu\partial_\mu\psi - m\bar{\psi}\psi \rm{.}$$ Now, you can plug this Lagrangian into the equations of motion above in which you differentiate with respect to ##\psi## - in this way you will obtain the equations of motion for the field ##\bar{\psi}##. Alternatively, you can differentiate with respect to ##\bar{\psi}## in the Euler-Lagrange equations, thereby obtaining the standard Dirac equation (i.e., the equations of motion for the field ##\psi##).

Observe that in the Lagrangian there is no term of the form ##\partial_\mu\bar{\psi}##, hence you get $$\frac{\partial\mathcal{L}}{\partial(\partial_\mu\bar{\psi})}=0 \rm{,}$$ which shows you that ##\frac{\partial\mathcal{L}}{\partial\bar{\psi}}=0## - this is one of the things you asked about. You can work out the rest of the identities from your Question yourself in the same manner.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...

Similar threads