To understand the classical derivation of the Rayleigh-Jeans law, it seems to me that the key is grasping the whole equipartition of energy concept. According to classical physics, energy must be conserved. So, classical physics should not (in my mind) predict obtaining an infinite amount of energy from a finite amount of energy. That would be a perpetual motion machine, no? So, we have our “Rayleigh-Jeans” cube. In it, we have some dust particles of an ideal blackbody. The blackbody dust has a certain temperature, which is to say that the blackbody has a certain finite energy. The blackbody is radiating. Ordinarily, by the conservation of energy, this radiation would cause the temperature (and internal energy) of the blackbody to decrease. However, we are in a “Rayleigh-Jeans” cube, so the radiation is bouncing all over the place and is not absorbed by the walls of the cube. After a transient period of time, the blackbody and the radiation are in thermal equilibrium. Again, no energy has left the cube, and there is a finite amount of energy in the cube. So, it seems to me that the equipartition of energy would suggest that the energy radiated from the blackbody is partitioned equally over all possible modes (field configurations) supported by the cavity. There are an infinite number of discrete modes supported by the cavity, because there is always that next harmonic. Thus, the energy in each mode would be Etot/infinity, no? This looks like zero, but we would be dealing with “levels of zero” and “levels of infinity.” So that the infinite number of modes times the energy in each mode equals the total finite energy in the cube. In other words: (infinity # of modes)*(Etot/infinity) = Etot. i.e. Infinities cancel, and the conservation of energy (predicted by classical physics) holds.
But in the Rayleigh-Jeans derivation, it predicts that the energy in each mode is proportional to temperature (since we are in thermal equilibrium). Emode = kT. What I don’t quite understand is why this k is specifically Boltzmann’s constant. Also, since k is finite and positive and T is finite and positive, then there is a nonzero (non-epsilon) energy in each mode. But I just said that the total energy must be partitioned by an infinite number of modes. So Emode = Etot/(infinite # of modes).
If we say that the number of modes (which is understood to be infinite) is N, then we would say that Emode = Etot/N. Or equivalently, Etot = N*Emode = NkT. But again, I’m having a conservation of energy crisis here. N is infinite. And kT is finite. So, NkT is infinite. Classical physics should not predict a violation of the conservation of energy. How is this issue resolved?
Let’s say that we don’t know Boltzmann’s constant. Then, maybe we can say that Etot = NkT such that N is very large, and kT is very small. Or equivalently, Emode = kT.
Okay, so N is an infinite quantity, but there are levels of infinity.
As has been derived (which I think I follow)
N = 8pi*L^3*f^3/(3c^3).
As f increases to infinity, N increases to infinity. That is, if we consider the total number of frequencies up to a certain maximum frequency, the number of modes supported by the cavity (over which the finite energy in the cavity would have to be partitioned) is given by the expression above. As this maximum frequency increases to infinity, the number of modes increases to infinity.
From here, by doing some straightforward calculus, we arrive at the Rayleigh-Jeans law, which is giving us the volumetric energy density per unit frequency, or we can say the specific energy per unit frequency. This energy density per frequency increases as the square of frequency. But this is an energy density per differential frequency. du/df. The energy density per frequency explodes to infinity, but when we multiply infinity by a differential (df), we get a finite value, no? What I mean to say (I think) is that the catastrophe of the ultraviolet catastrophe is not a violation of the conservation of energy. Classical physics should not and would not predict a violation of the conservation of energy, right?
However, I think I’m still running into a problem with a finite positive value for Boltzmann’s constant. If Boltzmann’s constant could be arbitrarily small, then I think that I could affirm with more assurance that the ultraviolet catastrophe is not a violation of the conservation of energy law. However, since Boltzmann’s constant is a definite positive value, it does seem like the Rayleigh-Jeans law predicts that if you have a blackbody in a Rayleigh-Jeans cube, you end up with infinite energy – the most absurd of all perpetual motion machines (which are all absurd anyway).
Please explain.
Perhaps the problem is that I don't quite understand Boltzmann's constant:
http://en.wikipedia.org/wiki/Boltzmann_constant