In my notes/online I have that for a set to be a field is a stronger condition than for a set to be a unique factorisation domain (obviously), but I'm confused about the concept of irreducibility in a field. For example in R\{0} there are no irreducible elements as far as I can tell? I'm trying to show whether a different ring is a UFD or not but again I find the concept of irreducibility difficult as here again the ring seems to have no irreducible elements.(adsbygoogle = window.adsbygoogle || []).push({});

Thanks in advance.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Unique Factorisation Domains/Fields

**Physics Forums | Science Articles, Homework Help, Discussion**