Universal Gravitation and Gravitational Field Question

Click For Summary
SUMMARY

The net gravitational force acting on a rocket with a mass of 1200 kg, positioned 3.0x10^8 m from the center of the Earth and between the Earth and the Moon, is calculated using Newton's law of universal gravitation. The gravitational force from the Earth is determined to be 5.3182 N, while the gravitational force from the Moon, after correcting the distance to 8.4x10^7 m, is found to be 0.83375 N. The net gravitational force is then calculated as 4.50 N, taking into account the opposing directions of the forces from the Earth and Moon.

PREREQUISITES
  • Newton's law of universal gravitation
  • Understanding of gravitational force calculations
  • Basic algebra for manipulating equations
  • Concept of vector addition in physics
NEXT STEPS
  • Study gravitational force calculations using Newton's law of universal gravitation
  • Learn about vector addition and its application in physics problems
  • Explore gravitational interactions in multi-body systems
  • Investigate the effects of distance on gravitational force
USEFUL FOR

Students studying physics, particularly those focusing on gravitational forces, as well as educators looking for examples of gravitational calculations in real-world scenarios.

EE123
Messages
5
Reaction score
0

Homework Statement


The Earth has a mass of 5.98x10^24 kg and the moon has a mass of 7.35x10^22 kg. The distance from the centre of the moon to the centre of the Earth is 3.84x10^8 m. A rocket with a total mass of 1200 kg is 3.0x10^8 m from the centre of the Earth and directly in between Earth and the moon. Find the net gravitational force on the rocket from the Earth and moon.


Homework Equations



Fg = Gm1m2 / r^2


The Attempt at a Solution



I think the above is the equation I'm suppose to be using. I have hard time grasping this concept :S.

And this is what I did

Fg on the rocket to the earth:

Fg = (6.67x10^-11)(5.98x10^24)(1200) / (3.0x10^8)^2

Fg = 5.3182 N

Fg on the rocket to the moon:

Fg = (6.67x10^-11)(7.35x10^22)(1200) / (3.0x10^8 + 3.84x10^8)^2

Fg = (6.67x10^-11)(7.35x10^22)(1200) / (6.84 x10^9)^2

Fg = 1.2574 x 10^-4 N

Fgnet = 5.3182 N + 1.2574 x 10^-4 N

Fgnet = 5.3183 N

I'm not sure if this is correct or not :S. From my understanding it seems to be. Please help.
 
Physics news on Phys.org
EE123 said:
And this is what I did

Fg on the rocket to the earth:

Fg = (6.67x10^-11)(5.98x10^24)(1200) / (3.0x10^8)^2

Fg = 5.3182 N
Looks good.

Fg on the rocket to the moon:

Fg = (6.67x10^-11)(7.35x10^22)(1200) / (3.0x10^8 + 3.84x10^8)^2
You want the distance from rocket to moon. How might you figure that out? Draw a diagram!

Fg = (6.67x10^-11)(7.35x10^22)(1200) / (6.84 x10^9)^2

Fg = 1.2574 x 10^-4 N

Fgnet = 5.3182 N + 1.2574 x 10^-4 N
Why did you add the forces? Do they point in the same direction?
 
Hi EE123. The gravitational force due to the Earth seems to be correct. But for the moon, the equation F=\frac{Gm_1m_2}{r^2} where r is the separation of mass 1 and mass 2. The rocket is between the Earth and the Moon and you know the distance from the Earth to the rocket and from the Earth to the moon, so you should be able to get r from that, it isn't 3.0x10^8 + 3.84x10^8. Also another thing is the force on the rocket due to the moon is in the opposite direction to the force on the rocket due to the Earth, so the net force won't be adding both values.
 
Sleepy_time said:
Hi EE123. The gravitational force due to the Earth seems to be correct. But for the moon, the equation F=\frac{Gm_1m_2}{r^2} where r is the separation of mass 1 and mass 2. The rocket is between the Earth and the Moon and you know the distance from the Earth to the rocket and from the Earth to the moon, so you should be able to get r from that, it isn't 3.0x10^8 + 3.84x10^8. Also another thing is the force on the rocket due to the moon is in the opposite direction to the force on the rocket due to the Earth, so the net force won't be adding both values.

Hi guys and thank you!And thank you very much for clarification sleepy_time, I appreciate it.

So would it be this then?

distance from rocket to the moon:

Δd = 3.84E8 - 3.0E 8
Δd = 8.4E7 m

Thus,

Fg = (6.67E-11)(7.35E22)(1200) / (8.4E7)^2

Fg = 0.83375 N

FgNet = 5.3182 + (-0.83375 N)

FgNet = 4.48445 N

FgNet = 4.50 N

Can you please explain the following: "the force on the rocket due to the moon is in the opposite direction to the force on the rocket due to the Earth"
 
EE123 said:
Can you please explain the following: "the force on the rocket due to the moon is in the opposite direction to the force on the rocket due to the Earth"
Well, since the rocket lies on a straight line in between Earth and the moon, the moon pulls on the rocket in one direction (towards the moon), and the Earth pulls on the rocket in the exact opposite direction (towards the Earth). This is shown in the diagram below. In the diagram, "E" is the earth, "M" is the moon, "R" is the rocket, and arrows show the directions of the two gravitational forces on the rocket. They oppose each other.

Code:
E <--------- R ------> M
 
cepheid said:
Well, since the rocket lies on a straight line in between Earth and the moon, the moon pulls on the rocket in one direction (towards the moon), and the Earth pulls on the rocket in the exact opposite direction (towards the Earth). This is shown in the diagram below. In the diagram, "E" is the earth, "M" is the moon, "R" is the rocket, and arrows show the directions of the two gravitational forces on the rocket. They oppose each other.

Code:
E <--------- R ------> M

Okay, thank you! So is my calculation correct??
 
EE123 said:
Okay, thank you! So is my calculation correct??
Yes I believe it is. Just careful with rounding your answer. Rounding 4.48446... will give 4.5N (1d.p.) or 4.48N (2d.p.)
 

Similar threads

  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
21
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
2K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K