I Universe Expansion: GR vs Hubble Reconciled

jeremyfiennes
Messages
323
Reaction score
17
TL;DR Summary
The two seem contractory. How are they reconciled?
The GR predictions for the universe's size are those of fig.a. Whereas the Hubble expansion is exponential, fig.b. How are the two reconciled?

expansioN.JPG
 
Physics news on Phys.org
jeremyfiennes said:
The GR predictions for the universe's size are those of fig.a.
Where are you getting that figure from?

jeremyfiennes said:
the Hubble expansion is exponential
What "Hubble expansion" are you talking about? Where are you getting that figure from?
 
  • Like
Likes Hyperfine and Vanadium 50
I don't know. My memory doesn't go back that far. But it us implicit in this one which I found in wikipedia:

universe future.jpg

"Possible velocity vs. redshift functions; patterned after Davis & Lineweave, CC BY-SA 3.0." The 'linear' curve is the Hubble law case.
 
All four curves in the OP are allowed under GR. Without knowing the context, we won't be able to answer why they were labelled like that.
The first graph shows the evolution of the scale factor with time in universes with matter+radiation (although the latter doesn't really show in such simplified representation) depending on the ratio of density vs critical density - these are labelled 'flat' and 'closed'. For the one labelled 'open' to curve upwards like that, the composition must include dark energy. If it were approaching linear expansion instead of exponential, all three would represent the possible futures of the universe as could be encountered in textbooks pre-1990s, before dark energy was seriously considered. As is, the 'open' one is a bit out of place in its company, and mislabelled, but permissible under GR nonetheless.
The graph labelled 'b) Hubble' shows the time evolution of the scale factor in universes where the only component present is dark energy. It's the only case where expansion is exponential. It is also equivalent to the Hubble parameter never changing, so it's what you get from naively assuming that the Hubble constant in the Hubble law is constant in time.
All kinds of scale factor evolutions are permissible under GR - exponential, linear, approaching steady state, contracting. Which one is appropriate depends on what's in the universe.

The graph in post #3 shows a completely different thing. That one's about how Doppler shift works.
 
  • Like
Likes vanhees71 and PeterDonis
Thanks.
 
jeremyfiennes said:
I don't know. My memory doesn't go back that far.
Need I point out that this means they are not valid references?

Since we have no valid basis for discussion, this thread is closed.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top